Skip to main content
Log in

The Fokker–Planck law of diffusion and pattern formation in heterogeneous environments

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We analyze the influence of spatially inhomogeneous diffusion on several common ecological problems. Diffusion is modeled with Fick’s law and the Fokker–Planck law of diffusion. We discuss the differences between the two formalisms and when to use either the one or the other. In doing so, we start with a pure diffusion equation, then turn to a reaction–diffusion system with one logistically growing component which invades the spatial domain. We also look at systems of two reacting components, namely a trimolecular oscillating chemical model system and an excitable predator–prey model. Contrary to Fickian diffusion, spatial inhomogeneities promote spatial and spatiotemporal pattern formation in case of Fokker–Planck diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson KE, Hilker FM, Nisbet RM (2012) Directional biases and resource-dependence in dispersal generate spatial patterning in a consumer-producer model. Ecol Lett 15(3):209–217

    Article  Google Scholar 

  • Andow DA, Kareiva P, Levin SA, Okubo A (1990) Spread of invading organisms. Landsc Ecol 4(2/3):177–188

    Article  Google Scholar 

  • Belmonte-Beitia J, Woolley T, Scott J, Maini P, Gaffney E (2013) Modelling biological invasions: individual to population scales at interfaces. J Theor Biol 334:1–12

    Article  MathSciNet  Google Scholar 

  • Bengfort M, Feudel U, Hilker FM, Malchow H (2014) Plankton blooms and patchiness generated by heterogeneous physical environments. Ecol Complex 20:185–194

    Article  Google Scholar 

  • Benson DL, Maini PK, Sherratt JA (1998) Unravelling the Turing bifurcation using spatially varying diffusion coefficients. J Math Biol 37:381–417

    Article  MathSciNet  MATH  Google Scholar 

  • Bringuier E (2011) Particle diffusion in an inhomogeneous medium. Eur J Phys 32(4):975–992

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell RS, Cosner C, Lou Y (2006) Movement toward better environments and the evolution of rapid diffusion. Math Biosci 204(2):199–214

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell S, Cosner C, Ruan S (2010) Spatial Ecology. Chapman & Hall Book/CRC Press, London

    MATH  Google Scholar 

  • Chapman S (1928) On the Brownian displacements and thermal diffusion of grains suspended in a non-uniform fluid. Proc R Soc Lond Ser A 119(781):34–54

    Article  MATH  Google Scholar 

  • Colombo E, Anteneodo C (2015) Metapopulation dynamics in a complex ecological landscape. Phys Rev E 92

  • Fick A (1855) Über Diffusion. Annalen der Physik 170(1):59–86 (in German)

    Article  Google Scholar 

  • Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7(4):355–369

    Article  MATH  Google Scholar 

  • Fokker AD (1914) Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Annalen der Physik 348(5):810–820 (in German)

    Article  Google Scholar 

  • Fronhofer EA, Hovestadt T, Poethke HJ (2013) From random walks to informed movement. Oikos 122(6):857–866

    Article  Google Scholar 

  • Garlick MJ, Powell JA, Hooten MB, McFarlane LR (2011) Homogenization of large-scale movement models in ecology. Bull Math Biol 73:2088–2108

    Article  MathSciNet  MATH  Google Scholar 

  • Hillen T, Painter KJ, Winkler M (2013) Anisotropic diffusion in oriented environments can lead to singularity formation. Eur J Appl Math 24(03):371–413

    Article  MathSciNet  MATH  Google Scholar 

  • Holloway G (1994) Comment: on modelling vertical trajectories of phytoplankton in a mixed layer. Deep Sea Res Part I Oceanogr Res Papers 41(5–6):957–959

    Article  Google Scholar 

  • Holmes EE, Lewis MA, Banks JE, Veit RR (1994) Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 75:17–29

    Article  Google Scholar 

  • Hunter J, Craig P, Phillips H (1993) On the use of random walk models with spatially variable diffusivity. J Comput Phys 106(2):366–376

    Article  MATH  Google Scholar 

  • Jin Y, Hilker FM, Steffler PM, Lewis MA (2014) Seasonal invasion dynamics in a spatially heterogeneous river with fluctuating flows. Bull Math Biol 76(7):1522–1565

    Article  MathSciNet  MATH  Google Scholar 

  • Keller EF, Segel LA (1971) Model for chemotaxis. J Theor Biol 30(2):225–234

    Article  MATH  Google Scholar 

  • Kierstead H, Slobodkin LB (1953) The size of water masses containing plankton blooms. J Mar Res XI I(1):141–147

    Google Scholar 

  • Kinezaki N, Kawasaki K, Shigesada N (2006) Spatial dynamics of invasion in sinusoidally varying environments. Popul Ecol 48(4):263–270

    Article  Google Scholar 

  • Kolmogorov A, Petrovskii I, Piskunov N (1937) Étude de l’equation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin de l’Université de Moscou, Série Internationale, Section A 1:1–25

    Google Scholar 

  • Kolmogorov AA (1931) Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math Ann 104(1):415–458 (in German)

    Article  MathSciNet  MATH  Google Scholar 

  • Lançon P, Batrouni G, Lobry L, Ostrowsky N (2001) Drift without flux: Brownian walker with a space-dependent diffusion coefficient. Europhys Lett (EPL) 54(1):28–34

    Article  Google Scholar 

  • Lapidus R, Levandowsky M (1981) Mathematical models of behavioral responses to sensory stimuli by protozoa. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, vol IV, 2nd edn. Academic Press, New York, pp 235–260

  • Lutscher F, Lewis MA, McCauley E (2006) Effects of heterogeneity on spread and persistence in rivers. Bull Math Biol 68(8):2129–2160

    Article  MathSciNet  MATH  Google Scholar 

  • Maar M, Nielsen TG, Stips A, Visser AW (2003) Microscale distribution of zooplankton in relation to turbulent diffusion. Limnol Oceanogr 48(3):1312–1325

    Article  Google Scholar 

  • Maini PK, Benson DL, Sherratt JA (1992) Pattern formation in reaction-diffusion models with spatially inhomogeneous diffusion coefficients. J Math Appl Med Biol 9:197–213

    Article  MathSciNet  MATH  Google Scholar 

  • Malchow H, Petrovskii SV, Venturino E (2008) Spatiotemporal patterns in ecology and epidemiology: theory, models, simulations. CRC Mathematical and Computational Biology Series. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Okubo A (1971) Oceanic diffusion diagrams. Deep Sea Res 18:789–802

    Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives, interdisciplinary applied mathematics, vol 14, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Patlak CS (1953) Random walk with persistence and ecternal bias. Bull Math Biophys 15:311–338

    Article  MathSciNet  MATH  Google Scholar 

  • Planck M (1917) Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften pp 324–341 (in German)

  • Potapov A, Schlägel UE, Lewis MA (2014) Evolutionarily stable diffusive dispersal. Discrete Contin Dyn Syst B 19(10):3317–3338

    Article  MathSciNet  MATH  Google Scholar 

  • Powell TM, Richerson PJ, Dillon TM, Agee BA, Dozier BJ, Godden DA, Myrup LO (1975) Spatial scales of current speed and phytoplankton biomass fluctuations in Lake Tahoe. Science 189(4208):1088–1090

    Article  Google Scholar 

  • Roberts PJ, Webster DR (2002) Turbulent diffusion. In: Shen HH, Cheng AH, Wang KH, Teng MH, Li CCK (eds) Environmental fluid mechanics: theories and applications. ASCE Publications, USA, pp 7–47

    Google Scholar 

  • Saiz E, Alcaraz M (1992) Free-swimming behaviour of Acartia clausi (Copepoda: Calanoida) under turbulent water movement. Mar Ecol Prog Ser 80:229–236

    Article  Google Scholar 

  • Sattin F (2008) Fick’s law and Fokker–Planck equation in inhomogeneous environments. Phys Lett A 372:3941–3945

    Article  MathSciNet  MATH  Google Scholar 

  • Schnakenberg J (1979) Simple chemical reaction systems with limit cycle behaviour. J Theor Biol 81(3):389–400

    Article  MathSciNet  Google Scholar 

  • Shigesada N, Kawasaki K, Teramoto E (1987) The speeds of traveling frontal waves in heterogeneous environments. In: Teramoto E, Yamaguti M (eds) Mathematical topics in population biology, morphogenesis and neurosciences, Lecture Notes in Biomathematics, vol 71. Springer, Berlin, pp 88–97

    Chapter  Google Scholar 

  • Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    Article  MathSciNet  MATH  Google Scholar 

  • Skellam JG (1973) The formulation and interpretation of mathematical models of diffusionary processes in population biology. In: Bartlett MS, Hiorns R (eds) The mathematical theory of the dynamics of biological populations. Academic Press, New York, pp 63–85

    Google Scholar 

  • Smoluchowski M (1916) Drei Vorgänge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Phys Z 17:557–585 (in German)

    Google Scholar 

  • Tabak EG, Tal FA (2004) Mixing in simple models for turbulent diffusion. Commun Pure Appl Math 57:1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Thomson DJ (1984) Random walk modelling of diffusion in inhomogeneous turbulence. Q J R Meteorol Soc 110:1107–1120

    Article  Google Scholar 

  • Thomson DJ (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J Fluid Mech 180:529–556

    Article  MATH  Google Scholar 

  • Truscott J, Brindley J (1994) Ocean plankton populations as excitable media. Bull Math Biol 56(5):981–998

    Article  MATH  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in plants and animals. Sinauer Associates, Sunderland

    Google Scholar 

  • Turing A (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond Ser B 237(641):37–72

    Article  MathSciNet  Google Scholar 

  • van Milligen BP, Bons P, Carreras BA, Sánchez R (2005) On the applicability of Fick’s law to diffusion in inhomogeneous systems. Eur J Phys 26:913–925

    Article  Google Scholar 

  • Visser AW (1997) Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar Ecol Prog Ser 158:275–281

    Article  Google Scholar 

  • Visser AW (2008) Lagrangian modelling of plankton motion: from deceptively simple random walks to Fokker–Planck and back again. J Mar Syst 70:287–299

    Article  Google Scholar 

  • Visser AW, Thygesen UH (2003) Random motility of plankton: diffusive and aggregative contributions. J Plankton Res 25(9):1157–1168

    Article  Google Scholar 

  • Visser AW, Mariani P, Pigolotti S (2009) Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk. J Plankton Res 31(2):121–133

    Article  Google Scholar 

  • Whiteford AD, Zastrow KD, Adams M, Bertalot L, Conroy S, O’Mullane MG, Popovichev S, Summers HP, Zabolotsky A, JET EFDA contributors (2004) Quantitative forward modelling of neutron emission to derive transport coefficients of tritium in JET, including error propagation through to transport parameters. In: Europhysics conference abstracts: 31st EPS conference on plasma physics, vol 28G. European Physical Society, London, pp P-1.159

  • Yamazaki H, Squires K, Strickler J (2004) Can turbulence reduce the energy costs of hovering for planktonic organisms?, chap 32. In: Seuront L, Strutton P (eds) Handbook of scaling methods in aquatic ecology: measurement, analysis, simulation. CRC Press, Boca Raton, pp 493–506

Download references

Acknowledgments

The authors are thankful to Hans-Joachim Poethke and Cyril Fleurant for discussions and suggestions and to the anonymous reviewers for their helpful comments. FMH acknowledges discussions with Roger M. Nisbet and Kurt E. Anderson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Bengfort.

Appendix

Appendix

1.1 Dimensionless diffusion equation

We transform a reaction–diffusion–equation with the Fokker–Planck equation into a dimensionless form. The original equation reads

$$\begin{aligned} \frac{\partial U}{\partial \tau }=f(U)-\frac{\partial }{\partial X}\left( \alpha \frac{\partial \delta (X)}{\partial X}U\right) +\frac{\partial ^2}{\partial X^2}(\delta (X) U), \end{aligned}$$
(22)

where U has the dimension of a concentration, X is the spatial variable, \(\tau \) has the dimension of time, and \(\delta (X)\) is a diffusion coefficient with dimension \(\text {space}^2/\text {time}\).

We introduce dimensionless variables: \(u=U/U_0, t=\tau /T_0\), and \(x=X/X_0\). \(U_0, T_0\), and \(X_0\) are constants with the dimension of UT, or X, respectively.

Using these variables gives

$$\begin{aligned} \frac{\partial u}{\partial t}=f(uU_0)\frac{T_0}{U_0}-\frac{T_0}{X_0^2}\frac{\partial }{\partial x}\left( \alpha \frac{\partial \delta (X)}{\partial x}u\right) +\frac{T_0}{X_0^2}\frac{\partial ^2}{\partial x^2}(\delta (X) u).\end{aligned}$$
(23)

Now we can define a dimensionless coefficient of diffusion \(D(x)\equiv \delta (xX_0) \frac{T_0}{X_0^2}\). This coefficient scales with the timescale \(T_0\) and the scaling factor of space \(X_0\). The final, dimensionless version of the Fokker–Planck equation with a reaction term then reads

$$\begin{aligned} \frac{\partial u}{\partial t}=F(u)-\frac{\partial }{\partial x}\left( \alpha \frac{\partial D(x)}{\partial x}u\right) +\frac{\partial ^2}{\partial x^2}(D(x) u), \end{aligned}$$
(24)

where F(u) is a dimensionless formulation of the reaction term f(U).

1.2 Stationary solution of the Fokker–Planck equation

A stationary solution to the Fokker–Planck equation (6) with \(\varLambda =\alpha \frac{\partial D}{\partial x}\) has to fulfil the following condition:

$$\begin{aligned} 0&=-\frac{\partial }{\partial x}\left( \alpha \left( \frac{\partial D(x)}{\partial x}\right) u(x)\right) +\frac{\partial ^2}{\partial x^2}\left( D(x)u(x)\right) \\ c&=(1-\alpha )\left( \frac{\partial D(x)}{\partial x}\right) u(x)+D(x)\frac{\partial u(x)}{\partial x}, \end{aligned}$$

where x is a constant. Using the ansatz \(u(x)=k\exp (f(x))>0\) with an unknown function f(x) we get

$$\begin{aligned} c&=(1-\alpha )u(x)\frac{\partial D(x)}{\partial x}+D(x)u(x)\frac{\text {d} f(x)}{\text {d} x}\\&\quad \Rightarrow \frac{\text {d} f(x)}{\text {d} x}=\frac{c}{D(x)}-(1-\alpha )\frac{1}{D(x)}\frac{\partial D(x)}{\partial x} \text { if }D(x)\ne 0\text { and }u(x)\ne 0\\&\quad \Rightarrow f(x)= c\int _0^x\frac{1}{D(x^{\,'})}\text {d}x^{\,'}-(1-\alpha )\left( \ln |D(x)|+c^*\right) , \end{aligned}$$

where \(c^*\) is another constant. Substituting f(x) into the ansatz we made for u(x) gives us the steady state solution for the Fokker–Planck equation:

$$\begin{aligned} u(x)=\exp \left( c\int _0^x\frac{1}{D(x^{\,'})} \text {d}x^{\,'}\right) u_0D(x)^{-(1-\alpha )}\quad \text { with } u_0=k\cdot \exp (-(1-\alpha )c^*). \end{aligned}$$

We used periodic boundary conditions. In our case with \(D(x)=A+B\cos (2\pi x), D(x)\) is a periodic function with the same values at \(x=0\) and \(x=L\), where L is the length of the spatial domain. The same must hold for u(x). Therefore the constant c must be set to zero. The solution reads

$$\begin{aligned} u(x)=u_0D(x)^{-(1-\alpha )}, \end{aligned}$$

where the constant \(u_0\) depends on the initial conditions,

$$\begin{aligned} u_0=\dfrac{\int _0^Lu(x,t=0) \text {d}x}{\int _0^LD(x)^{-(1-\alpha )}\text {d}x}. \end{aligned}$$
Fig. 8
figure 8

Spatial and temporal periodic blooms in an excitable predator–prey system with periodic boundary conditions. Only prey concentrations are shown. Turbulent and ecological diffusion vary in phase. \(D_{turb}(x)=D_{eco}^{(2)}(x)=(1+0.9\cos (2\pi x))10^{-3}\). The initial condition is a homogeneous distribution of the stationary solution of system (19)

Fig. 9
figure 9

Numerically analyzed values of \(D_{eco}^{(2)min}\) and \(\varDelta D_{eco}^{(2)}\) where excitation occur in a spatially diffusive system with \(D_{eco}^{(2)}= (D_{eco}^{(2)min}+\varDelta \frac{D_{eco}^{(2)}}{2}(1+\cos (2\pi x)))\). \(D_{turb}(x)=10^{-3}\cdot (1+0.9\cos (2\pi x))\). We tested whether the value of the prey concentration exceeded a threshold of 0.5 for at least two times or not, to define if there are periodic blooms in the system. Homogeneous initial conditions are the stationary solutions of system (19). Note that the values of \(\varDelta D_{eco}^{(2)}\) are much larger than in the case in which \(D_{eco}\) and \(D_{turb}\) vary in anti-phase (Fig. 7)

1.3 Plankton model with turbulent and ecological diffusion in phase

To study the effect of ecological diffusion, which varies in phase with the turbulent diffusion \(D_{turb}\), we set \(D_{eco}^{(2)}(x)=D_{turb}(x)\). In this case, the zooplankton is drifted to areas with small \(D_{turb}\), and blooms occur with the same mechanism as in the previous simulations (Fig. 8). The drifting effect caused by the Fokker–Planck law of diffusion has to be stronger than in the former case (where \(D_{turb}\) and \(D_{eco}\) are in anti-phase) to create a bloom (Fig. 9). This is because the smoothing effect of \(D_{turb}\) prevails in areas where the predators are diminished by the drift.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengfort, M., Malchow, H. & Hilker, F.M. The Fokker–Planck law of diffusion and pattern formation in heterogeneous environments. J. Math. Biol. 73, 683–704 (2016). https://doi.org/10.1007/s00285-016-0966-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-016-0966-8

Keywords

Mathematics Subject Classification

Navigation