Skip to main content
Log in

Bifurcation and dynamics in a mathematical model of early atherosclerosis

How acute inflammation drives lesion development

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present here a mathematical model describing the primary mechanisms that drive the early stages of atherosclerosis. This involves the interactions between modified low density lipoprotein (LDL), monocytes/macrophages, cytokines and foam cells. This model suggests that there is an initial inflammatory phase associated with atherosclerotic lesion development and a longer, quasi-static process of plaque development inside the arterial wall that follows the initial transient. We will show results that show how different LDL concentrations in the blood stream and different immune responses can affect the development of a plaque. Through numerical bifurcation analysis, we show the existence of a fold bifurcation when the flux of LDL from the blood is sufficiently high. By analysing the model presented in this paper, we gain a greater insight into this inflammatory response qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersson J, Libby P, Hansson G (2010) Adaptive immunity and atherosclerosis. Clin Immunol 134(1, SI):33–46

    Article  Google Scholar 

  • Berg A, Scherer P (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96(9):939–949

    Article  Google Scholar 

  • Bulelzai M, Dubbeldam J (2012) Long time evolution of atherosclerotic plaques. J Theor Biol 297:1–10

    Article  MathSciNet  Google Scholar 

  • Bulelzai M, Dubbeldam J, Meijer H (2014) Bifurcation analysis of a model for atherosclerotic plaque evolution. Phys D-Nonlinear Phenom 278:31–43

    Article  MathSciNet  Google Scholar 

  • Calvez V, Ebde A, Meunier N, Raoult A (2009) Mathematical modelling of the atherosclerotic plaque formation. ESAIM Proc 28:1–12

    Article  MATH  MathSciNet  Google Scholar 

  • Calvez V, Houot J, Meunier N, Raoult A, Rusnakova G (2010) Mathematical and numerical modeling of early atherosclerotic lesions. ESAIM Proc 30:1–14

    Article  MATH  MathSciNet  Google Scholar 

  • Channon K (2002) The endothelium and the pathogenesis of atherosclerosis. Medicine 30(4):54–58

    Article  Google Scholar 

  • Charo I, Taubman M (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95(9):858–866

    Article  Google Scholar 

  • Cilla M, Pena E, Martinez M (2014) Mathematical modelling of atheroma plaque formation and development in coronary arteries. J R Soc Int 11(90):20130866

    Article  Google Scholar 

  • Cobbold C, Sherratt J, Maxwell S (2002) Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach. Bull Math Biol 64(1):65–95

    Article  Google Scholar 

  • Cohen A, Myerscough M, Thompson R (2014) Athero-protective effects of high density lipoproteins (HDL): an ODE model of the early stages of atherosclerosis. Bull Math Biol 76(5):1117–1142

    Article  MATH  MathSciNet  Google Scholar 

  • Dabagh M, Jalali P, Tarbell J (2009) The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension. Am J Physiol-Heart Circ Physiol 297(3):H983–H996

    Article  Google Scholar 

  • Di Vito L, Porto I, Burzotta F, Trani C, Pirozzolo G, Niccoli G, Leone AM, Crea F (2013) Radial artery intima-media ratio predicts presence of coronary thin-cap fibroatheroma: A frequency domain-optical coherence tomography study. Int J Cardiol 168(3):1917–1922

    Article  Google Scholar 

  • Doedel E, Champneys A, Fairgrieve T, Kuznetsov Y, Oldeman B, Paffenroth R, Sandstede B, Wang X, Zhang C (2007) AUTO-07P: continuation and bifurcation software for ordinary differential equations. http://cmvl.cs.concordia.ca/. Accessed Oct 2012

  • Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins C, Iwamoto Y, Thompson B, Carlson A, Heidt T, Majmudar M, Lasitschka F, Etzrodt M, Waterman P, Waring M, Chicoine A, van der Laan A, Niessen H, Piek J, Rubin B, Butany J, Stone J, Katus H, Murphy S, Morrow D, Sabatine M, Vinegoni C, Moskowitz M, Pittet M, Libby P, Lin C, Swirski F, Weissleder R, Nahrendorf M (2012) Myocardial infarction accelerates atherosclerosis. Nature 487(7407):325–329

    Article  Google Scholar 

  • El Khatib N, Genieys S, Volpert V (2007) Atherosclerosis initiation modeled as an inflammatory process. Math Model Nat Phenom 2(2):126–141

    Article  MathSciNet  Google Scholar 

  • El Khatib N, Genieys S, Kazmierczak B, Volpert V (2009) Mathematical modelling of atherosclerosis as an inflammatory disease. Philos Trans R Soc A-Math Phys Eng Sci 367(1908):4877–4886

    Article  MATH  Google Scholar 

  • El Khatib N, Genieys S, Kazmierczak B, Volpert V (2012) Reaction–diffusion model of atherosclerosis development. J Math Biol 65(2):349–374

    Article  MATH  MathSciNet  Google Scholar 

  • Filipovic N, Rosic M, Tanaskovic I, Milosevic Z, Nikolic D, Zdravkovic N, Peulic A, Kojic M, Fotiadis D, Parodi O (2012) ARTreat project: three-dimensional numerical simulation of plaque formation and development in the arteries. IEEE Trans Inf Technol Biomed 16(2, SI):272–278

    Article  Google Scholar 

  • Filipovic N, Nikolic D, Saveljic I, Milosevic Z, Exarchos T, Pelosi G, Parodi O (2013) Computer simulation of three-dimensional plaque formation and progression in the coronary artery. Comput Fluids 88:826–833

    Article  Google Scholar 

  • Fok P (2012) Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem. J Theor Biol 314:23–33

    Article  MathSciNet  Google Scholar 

  • Furchgott R (1999) Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide. Biosci Rep 19(4):235–251

    Article  Google Scholar 

  • Galkina E, Ley K (2007) Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol 27(11):2292–2301

    Article  Google Scholar 

  • Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis. Ann Rev Immunol 27:165–197

    Article  Google Scholar 

  • Gessaghi V, Raschi M, Tanoni D, Perazzo C, Larreteguy A (2011) Growth model for cholesterol accumulation in the wall of a simplified 3D geometry of the carotid bifurcation. Comput Methods Appl Mech Eng 200(23–24):2117–2125

    Article  MATH  MathSciNet  Google Scholar 

  • Han K, Hong K, Park J, Ko J, Kang D, Choi K, Hong M, Park S, Park S (2004) C-reactive protein promotes monocyte chemoattractant protein-1-mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes. Circulation 109(21):2566–2571

    Article  Google Scholar 

  • Hansson G, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519

    Article  Google Scholar 

  • Hidalgo A, Tello L, Toro E (2014) Numerical and analytical study of an atherosclerosis inflammatory disease model. J Math Biol 68(7):1785–1814

    Article  MATH  MathSciNet  Google Scholar 

  • Ibragimov A, McNeal C, Ritter L, Walton J (2005) A mathematical model of atherogenesis as an inflammatory response. Math Med Biol-A J IMA 22(4):305–333

    Article  MATH  Google Scholar 

  • Kharbanda R, MacAllister R (2005) The atherosclerosis time-line and the role of the endothelium. Curr Med Chem Immunol Endocr Metab Agents 5(1):47–52

    Article  Google Scholar 

  • Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  Google Scholar 

  • Libby P, Ridker P (2006) Inflammation and atherothrombosis–from population biology and bench research to clinical practice. J Am Coll Cardiol 48(9, Suppl. A):A33–A46

    Article  Google Scholar 

  • Little M, Gola A, Tzoulaki I (2009) A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLOS Comput Biol 5(10):e1000539

    Article  MathSciNet  Google Scholar 

  • Llodra J, Angeli V, Liu J, Trogan E, Fisher E, Randolph G (2004) Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci USA 101(32):11,779–11,784

    Article  Google Scholar 

  • Lusis A (2000) Atherosclerosis. Nature 407(6801):233–241

    Article  Google Scholar 

  • McKay C, McKee S, Mottram N, Mulholland T, Wilson S, Kennedy S, Wadsworth R (2004) Towards a model of atherosclerosis. In: Tech. rep. University of Strathclyde

  • McKellar G, McCarey D, Sattar N, McInnes I (2009) Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol 6(6):410–417

    Article  Google Scholar 

  • Milonas C, Jernberg T, Lindback J, Agewall S, Wallentin L, Stenestrand U (2010) Effect of angiotensin-converting enzyme inhibition on 1 year mortality and frequency of repeat acute myocardial infarction in patients with acute myocardial infarction. Am J Cardiol 105(9):1229–1234

    Article  Google Scholar 

  • Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro L (2006) Nitric oxide and atherosclerosis: an update. Nitric Oxide-Biol Chem 15(4):265–279

    Article  Google Scholar 

  • Newby A (2008) Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 28(12):2108–2114

    Article  MathSciNet  Google Scholar 

  • Newby A, Zaltsman A (1999) Fibrous cap formation or destruction—the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovasc Res 41(2):345–360

    Article  Google Scholar 

  • Nozawa N, Hibi K, Endo M, Sugano T, Ebina T, Kosuge M, Tsukahara K, Okuda J, Umemura S, Kimura K (2010) Association between circulating monocytes and coronary plaque progression in patients with acute myocardial infarction. Circ J 74(7):1384–1391

    Article  Google Scholar 

  • Ougrinovskaia A, Thompson R, Myerscough M (2010) An Ode model of early stages of atherosclerosis: mechanisms of the inflammatory response. Bull Math Biol 72(6):1534–1561

    Article  MATH  MathSciNet  Google Scholar 

  • Paavola C, Hemmerich S, Grunberger D, Polsky I, Bloom A, Freedman R, Mulkins M, Bhakta S, McCarley D, Wiesent L, Wong B, Jarnagin K, Handel T (1998) Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptor CCR2B. J Biol Chem 273(50):33,157–33,165

    Article  Google Scholar 

  • Pai J, Pischon T, Ma J, Manson J, Hankinson S, Joshipura K, Curhan G, Rifai N, Cannuscio C, Stampfer M, Rimm E (2004) Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 351(25):2599–2610

    Article  Google Scholar 

  • Pappalardo F, Musumeci S, Motta S (2008) Modeling immune system control of atherogenesis. Bioinformatics 24(15):1715–1721

    Article  Google Scholar 

  • Parodi O, Exarchos T, Marraccini P, Vozzi F, Milosevic Z, Nikolic D, Sakellarios A, Siogkas P, Fotiadis D, Filipovic N (2012) Patient-specific prediction of coronary plaque growth from CTA angiography: a multiscale model for plaque formation and progression. IEEE Trans Inf Technol Biomed 16(5, SI):952–965

    Article  Google Scholar 

  • Plank M, Wall D, David T (2007) The role of endothelial calcium and nitric oxide in the localisation of atherosclerosis. Math Biosci 207(1):26–39

    Article  MATH  MathSciNet  Google Scholar 

  • Poston R, Poston D (2007) Typical atherosclerotic plaque morphology produced in silico by an atherogenesis model based on self-perpetuating propagating macrophage recruitment. Math Model Nat Phenom 2(2):142–149

    Article  MathSciNet  Google Scholar 

  • Prior JA, Jordan KP, Kadam UT (2014) Associations between cardiovascular disease severity, osteoarthritis co-morbidity and physical health: a population-based study. Rheumatology 53(10):1794–1802

  • Ross R (1999) Mechanisms of disease—atherosclerosis—an inflammatory disease. N Engl J Med 340(2):115–126

    Article  Google Scholar 

  • Tabas I (2010) Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 10(1):36–46

    Google Scholar 

  • Volpert V, Petrovskii S (2009) Reaction–diffusion waves in biology. Phys Life Rev 6(4):267–310

    Article  Google Scholar 

  • Zohdi T, Holzapfel G, Berger S (2004) A phenomenological model for atherosclerotic plaque growth and rupture. J Theor Biol 227(3):437–443

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Chalmers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalmers, A.D., Cohen, A., Bursill, C.A. et al. Bifurcation and dynamics in a mathematical model of early atherosclerosis. J. Math. Biol. 71, 1451–1480 (2015). https://doi.org/10.1007/s00285-015-0864-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0864-5

Keywords

Mathematics Subject Classification

Navigation