Skip to main content

Advertisement

Log in

A cellular automaton model examining the effects of oxygen, hydrogen ions and lactate on early tumour growth

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Some tumours are known to exhibit an extracellular pH that is more acidic than the intracellular, creating a ‘reversed pH gradient’ across the cell membrane and this has been shown to affect their invasive and metastatic potential. Tumour hypoxia also plays an important role in tumour development and has been directly linked to both tumour morphology and aggressiveness. In this paper, we present a hybrid mathematical model of intracellular pH regulation that examines the effect of oxygen and pH on tumour growth and morphology. In particular, we investigate the impact of pH regulatory mechanisms on the cellular pH gradient and tumour morphology. Analysis of the model shows that: low activity of the Na\(^+\)/H\(^+\) exchanger or a high rate of anaerobic glycolysis can give rise to a “fingering” tumour morphology; and a high activity of the lactate/H\(^+\) symporter can result in a reversed transmembrane pH gradient across a large portion of the tumour mass. Also, the reversed pH gradient is spatially heterogenous within the tumour, with a normal pH gradient observed within an intermediate growth layer within the spheroid. We also include a fractal dimension analysis of the simulated tumour contours, in which we compare the fractal dimensions of the simulated tumour surfaces with those found experimentally via photomicrographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adam MF, Gabalski EC, Bloch DA, Oehlert JW, Brown JM, Elsaid AA, Pinto HA, Terris DJ (1999) Tissue oxygen distribution in head and neck cancer patients. Head Neck 21:146–153

    Article  Google Scholar 

  • Al-Husari M, Webb SD (2013) Regulation of tumour intracellular pH: a mathematical model examining the interplay between H\(^+\) and lactate. J Theor Biol 322:58–71

    Article  MathSciNet  Google Scholar 

  • Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Math Med Biol 22:163–186

    Article  MATH  Google Scholar 

  • Aronson PS (1985) Kinetic properties of the plasma membrane Na\(^+\)-H\(^+\) exchanger. Ann Rev Physiol 47:545–560

    Article  Google Scholar 

  • Baish JW, Jain RK (2000) Fractals and Cancer. Cancer Res 60:3683–3688

    Google Scholar 

  • Barry MA, Eastman A (1992) Endonuclease activation during apoptosis: The role of cytosolic Ca\(^{2+}\) and pH. Biochem Bioph Res Co 186(2):782–789

    Article  Google Scholar 

  • Becker WM, Kleinsmith LJ, Hardin J, Bertoni GP (2008) The World of the Cell. Perarson Benjamin Cummings, San Francisco

    Google Scholar 

  • Behrens J (1993) The role of cell adhesion molecules in cancer invasion and metastasis. Breast Cancer Res Tr 24:175–184

    Article  Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2003) Biochemistry, 5th edn. W. H. Freeman, New York

    Google Scholar 

  • Bertuzzi A, Fasano A, Gandolfi A, Sinisgalli C (2010) Necrotic core in EMT6/Ro tumor spheroids: is it caused by an ATP deficit? J Theor Biol 262:142–150

    Article  Google Scholar 

  • Boron WF (1985) Intracellular pH-regulating mechanisms for the squid axons: relation between the external Na\(^{+}\) and HCO\(_3^-\) dependences. J Gen Physiol 85(3):325–345

    Article  Google Scholar 

  • Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 19:223–229

    Article  Google Scholar 

  • Brooks GA (1986) Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed Pro 45(13):2924–2929

    Google Scholar 

  • Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  Google Scholar 

  • Busa WB (1986) Mechanisms and consequences of pH-mediated cell regulation. Ann Rev Physiol 48: 389–402

    Google Scholar 

  • Busco G, Cardone RA, Greco MR, Bellizzi A, Colella M, Antelmi E, Mancini MT, Dell’Aquila ME, Casavola V, Paradiso A, Reshkin SJ (2010) NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. FASEB J 24(10):3903–3915

    Article  Google Scholar 

  • Byrne H, Alarcon T, Owen M, Webb SD, Maini P (2006) Modeling aspects of cancer dynamics: a review. Phi Trans R Soc A 364:1563–1578

    Article  MathSciNet  Google Scholar 

  • Cardone RA, Casavola V, Reshkin SJ (2005) The role of distributed pH dynamics and the Na\(^+/\) H\(^+\) exchanger in metastasis. Nat Rev Cancer 5:786–795

  • Casciari JJ, Sotirchos SV, Sutherland RM (1992) Variations in tumour cell growth rates and metabolism with oxygen concentrations, glucose concentration, and extracellular pH. J Cell Physiol 151(2):386–394

    Article  Google Scholar 

  • Chiang Y, Chou CY, Hsu KF, Huang YF, Shen MR (2008) EGF upregulates Na\(^+\)/H\(^+\) exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness. J Cell Physiol 214:810–819

    Article  Google Scholar 

  • Crone C, Levitt DG (1984) Capillary permeability to small solutes. In: Renkin EM, Michel CC (eds) Handbook of Physiology: A critical, comprehensive presentation of physiological knowledge and concepts, vol IV, chap 2. American Physiological Society,Bethesda, pp 414 and 434–437

  • de Melo RHC (2007) Using fractal characteristics such as fractal dimension lacunarity and succolarity to characterize texture patterns on images. Universidade Federal Fluminense, Masters degree disseration

  • Dobrescu, R, Dobrescu, M, Talos, F (2004) Mutifractal medica image analysis using fractal dimension. In: Dobrescu R, Vasilescu C (eds) Interdiscipinary appications of fractal and chaos theory. Academiei Romane, Bucuresti, pp 78–83

  • Dormann S, Deutsch A (2002) Modeling of self-organized avascular tumor growth with a hybrid cellular automaton. In Silico Biol 2(3):393–406

    Google Scholar 

  • Düchting W, Vogelsaenger T (1984) Analysis, forecasting and control of three-dimensional tumor growth and treatment. J Med Syst 8:461–475

    Article  Google Scholar 

  • Epstein NA, Fatti LP (1976) Prostatic carcinoma: some morphological features affecting prognosis. Cancer 37:2455–2465

    Article  Google Scholar 

  • EtehadTavakol M, Lucas C, Sadri S, Ng EYK (2010) Analysis of breast thermography using fractal dimension to establish possible difference between malignant and benign patterns. J Healthcare Eng 1(1):27–43

    Article  Google Scholar 

  • Falconer K (2003) Fractal geometry. Wiley, London

    Book  MATH  Google Scholar 

  • Ferreira SC, Martins ML, Vilela MJ (2002) Reaction-diffusion model for the growth of avascular tumor. Phys Rev E 65(021907):1–8

    MathSciNet  Google Scholar 

  • Freyer JP, Sutherland RM (1986) Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res 46:3504–3512

    Google Scholar 

  • Freyer JP, Tustanoff E, Franko AJ, Sutherland RM (1984) In situ oxygen consumption rates of cells in V-79 multicellular spheroids during growth. J Cell Physiol 118:53–61

    Article  Google Scholar 

  • Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48:441–449

    Article  Google Scholar 

  • Gardner LB, Li Q, Park MS, Flanagan WM, Semenza GL, Dang CV (2001) Hypoxia inhibits G1\S transition through regulation of p27 expression. J Biol Chem 276(11):7919–7926

    Article  Google Scholar 

  • Gatenby RA, Gawlinski ET (1996) A reaction diffusion model of cancer invasion. Cancer Res 56:5745–5753

    Google Scholar 

  • Gatenby RA, Gawlinski ET (2003) The glycolytic phenotype in carcinogenesis and tumour invasion: insights through mathematical models. Cancer Res 63:3847–3854

    Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nature Rev 4:891–899

    Google Scholar 

  • Gillies RJ, Martinez-Zaguilan R (1991) Regulation of intracellular pH in BALB/c 3 T3 cells. J Biol Chem 226(3):1551–1556

    Google Scholar 

  • Gillies RJ, Martinez-Zaguilan R, Peterson E, Perona R (1992) Role of intracellular pH in mammalian cell proliferation. Cell Physiol Biochem 2:159–179

    Article  Google Scholar 

  • Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450

    Google Scholar 

  • Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 3(64):425–427

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  Google Scholar 

  • Harguindey S, Orive G, Pedraz JL, Paradiso A, Reshkin SJ (2005) The role of pH dynamics and the Na\(^+\)/ H\(^+\) antiporter in the etiopathogenesis and treatment of cancer. two faces of the same coin–one single nature. Biochim Biophys Acta 1756:1–24

    Google Scholar 

  • Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    Google Scholar 

  • Helmlinger G, Sckell A, Dellian M, Forbes NS, Jain RK (2002) Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8:1284–1291

    Google Scholar 

  • Hochachka PW, Mommsen TP (1983) Protons and anaerobiosis. Science 219:1391–1397

    Article  Google Scholar 

  • Ichim, L, Oltean, E, Dobrescu, R (2008) Fractal evaluation of a discrete model for simulation of avascular tumor growth. In: Proceedings of the 10th WSEAS International Conference on Automatic Control, Modelling & Simulation (ACMOS’08), pp 90–95

  • Jiang Y, Pjesivac-Grbovic J, Cantrell C, Freyer JP (2005) A multiscale model for avascular tumor growth. Biophys J 89:3884–3894

    Article  Google Scholar 

  • Kallinowski F, Tyler G, Mueller-Klieser W, Vaupel P (1989) Growth-related changes of oxygen consumption rates of tumor cells grown in vitro and in vivo. J Cell Physiol 191:138–183

    Google Scholar 

  • Kaminskas E (1978) The pH-dependence of sugar-transport and glycolysis in cultured ehrlich ascites-tumour cells. Biochem J 174(2):453–459

    Google Scholar 

  • Kansal AR, Torquato S, Harsh GI, Chiocca EA, Deisboeck TS (2000) Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203(4):367–382

    Article  Google Scholar 

  • Kennedy KM, Dewhirst MW (2010) Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 6:127–148

    Article  Google Scholar 

  • Kohn KW (1996) Beyond DNA cross-linking: history and prospects of DNA-targeted cancer treatment. Cancer Res 56:5533–5546

    Google Scholar 

  • Lagadic-Gossmann D, Huc L, Lecureur V (2004) Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11:953–961

    Article  Google Scholar 

  • Lartigau E, Randrianarivelo H, Avril MF, Margulis A, Spatz A, Eschwege F, Guichard M (1997) Intratumoral oxygen tension in metastatic melanoma. Melanoma Res 7:400–406

    Article  Google Scholar 

  • Lawrence E (1989) A Guide to Modern Biology: Genetics. Cells and Systems. Addison-Wesley Longman Ltd., Canada

    Google Scholar 

  • Lide DR (1994) Handbook of Chemistry, 74th edn. CRC Press, Boca Raton

    Google Scholar 

  • Liotta LA, Stetler-Stevenson WG (1991) Tumor invasion and metastasis: an imbalance of positive and negative regulation. Cancer Res 51(18 Suppl.):5054s–5059s

    Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE (2008) Molecular Cell Biology, 4th edn. W. H. freeman, New York

    Google Scholar 

  • Lowengrub JS, Frieboes HB, Jin F, Chuang YL, Li X, Macklin P, Wise SM, Cristini V (2010) Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23:R1–R91

    Article  MathSciNet  MATH  Google Scholar 

  • Madshus IH (1988) Regulation of intracellular p H in eukaryotic cells. Biochem J 250:1–8

    Google Scholar 

  • Martinez-Zaguilan R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix MJ (1996) Acidic pH enhances the invasive behaviour of human melanoma cells. Clin Exp Metastas 14(2):176–186

    Article  Google Scholar 

  • McDermott JC, Bonen A (1993) Lactate transport by skeletal muscle sarcolemmal vesicles. Mol Cell Biochem 122(2):113–121

    Article  Google Scholar 

  • Missailidis S (2008) Anticancer Therapeutics. Wiley-Blackwell, London

    Book  Google Scholar 

  • Movsas B, Chapman JD, Hanlon AL, Horwitz EM, Greenberg RE, Stobbe C, Hanks GE, Pollack A (2002) Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: Preliminary findings. Urology 60:634–639

    Article  Google Scholar 

  • Neville AA (2003) Biomedical modelling incorporating growth. PhD thesis, University of Nottingham

  • Oller AR, Buser CW, Tyo MA, Thilly WG (1989) Growth of mammalian cells at high oxygen concentrations. J Cell Sci 94(1):43–49

    Google Scholar 

  • Park HJ (1995) Effects of intracellular pH on apoptosis in HL-60 human leukemia cells. Yonsei Med J 36(6):473–479

    Google Scholar 

  • Parks S, Chiche J, Pouyssegur (2011) pH control mechanisms of tumor survival and growth. J Cell Physiol 226(2):299–308

    Article  Google Scholar 

  • Patel AA, Gawlinski ET, Lemieux SK, Gatenby RA (2001) A cellular automaton model of early tumor growth and invasion. J Theor Biol 213:315–331

    Article  MathSciNet  Google Scholar 

  • Pennycuick CJ (1988) Conversion Factors: S.I. Units and Many Others, 19th edn. University of Chicago Press

  • Pham TD (2007) Fractal characteristics of mass spectrometry based cancer data. In: Proceedings of the 2007 WSEAS International Conference on Cellular & Molecular Biology—Biophysics & Bioengineering, pp 30–35

  • Pinheiro C, Longatto-Filho A, Ferreira L, Pereira SM, Etlinger D, Moreira MA, Jubé LF, Queiroz GS, Schmitt F, Baltazar F (2008a) Increasing expression of monocarboxylate transporters 1 and 4 along progression to invasive cervical carcinoma. Int J Gynecol Pathol 27:568–574

    Article  Google Scholar 

  • Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S, Pellerin L, Rodrigues M, Alves VA, Schmitt F, Baltazar F (2008b) Increased expression of monocarboxylate transporters 1, 2, and 4 in colorectal carcinomas. Virchows Arch 452:139–146

    Article  Google Scholar 

  • Pouysségur J, Franchi A, L’Akmain G, Paris S (1985) Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts. Fed Eur Biochem Soc 190(1):115–119

    Google Scholar 

  • Powathil GC, Gordon KE, Hill LA, Chaplain MAJ (2012) Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: biological insights from a hybrid multiscale cellular automaton model. J Theor Biol 308:1–19

    Article  MathSciNet  Google Scholar 

  • Quennet V, Yaromina A, Zips D, Rosner A, Walenta S, Baumann M, Mueller-Kliesera W (2006) Tumor lactate content predicts for response to fractionated irradiation of human squamous cell carcinomas in nude mice. Radiother Oncol 81(2):130–135

    Article  Google Scholar 

  • Rangayyan RM, Nguyen TM (2007) Fractal analysis of contours of breast masses in mammograms. J Digital Imag 20:223–237

    Article  Google Scholar 

  • Rejniak KA (2005) A single-cell approach in modeling the dynamics of tumor microregions. Math Biosci Eng 2(3):643–655

    Article  MathSciNet  MATH  Google Scholar 

  • Rofstad EK, Mathiesen B, Kindem K, Galappathi K (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66(13):6699–6707

    Google Scholar 

  • Sauer LA, Stayman JW, Dauchy RT (1982) Amino acid, glucose, and lactic acid utilization in vivo by rat tumors. Cancer Res 42:4090–4097

    Google Scholar 

  • Schwickert G, Walenta S, Sundfør K, Rofstad EK, Mueller-Kliesera W (1995) Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 55:4757–4759

    Google Scholar 

  • Smallbone K, Gatenby RA, Gillies RJ, Maini PK, Gavaghan DJ (2007) Metabolic changes during carcinogenesis: Potential impact on invasiveness. J Theor Biol 244:703–713

    Article  MathSciNet  Google Scholar 

  • Skubalska-Rafajlowicz E (2005) A new method of estimation of the box-counting dimension of multivariate objects using space-filling curves. Nonlin Anal 63:e1281–e1287

    Article  MATH  Google Scholar 

  • Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) Migration of human melanoma cells depends on extracellular pH and Na\(^+\)/H\(^+\) exchange. J Physiol 567:225–238

    Article  Google Scholar 

  • Swietach P, Vaughan-Jones RD, Harris AL (2007) Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metast Rev 26:299–310

    Article  Google Scholar 

  • Swinson DEB, Jones JL, Richardson D, Wykoff C, Turley H, Pastorek J, Taub N, Harris AL, O’Byrne KJ (2003) Carbonic anhydrase IX expression, a novel surrogate marker of tumor hypoxia, is associated with a poor prognosis in non-small-cell lung cancer. J Clin Oncol 21:473–482

    Article  Google Scholar 

  • Sztojanov, I, Crisan, DA, Mina, CP, Voinea, V (2009) Image Processing in Biology Based on the Fractal Analysis. In: Chen YS (ed) Image Proceesing. InTech, pp 323–344

  • Tambasco M, Eliasziw M, Magliocco AM (2010) Morphologic complexity of epithelial architecture for predicting invasive breast cancer survival. J Transl Med 8:1–10

    Article  Google Scholar 

  • Thomlinson RH, Gray LH (1955) The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 4:539–549

    Article  Google Scholar 

  • Tomes L, Emberley E, Niu Y, Troup S, Pastorek J, Strange K, Harris A, Watson PH (2003) Necrosis and hypoxia in invasive breast carcinoma. Breast Cancer Res Treat 81:61–69

    Article  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors. Cancer Res 49(23):6449–6465

    Google Scholar 

  • Venkatasubramanian R, Henson MA, Forbes NS (2006) Incorporating energy metabolism into a growth model of multicellular tumor spheroids. J Theor Biol 242:440–453

    Article  MathSciNet  Google Scholar 

  • Wachsberger PR, Landry J, Storck C (1997) Mammalian cells adapted to growth at pH 6.7 have eleveted HSP27 levels and are resistant to cisplatin. Int J Hyperther 13:251–255

    Google Scholar 

  • Wahl ML, Owen JA, Burd R, Herlands RA, Nogami SS, Rodeck U, Berd D, Leeper DB, Owen CS (2002) Regulation of intracellular pH in human melanoma: Potential therapeutic implications. Mol Cancer Ther 1:617–628

    Google Scholar 

  • Walenta S, Wetterling M, Lehrke M, Schwickert G, Sundfør K, Rofstad EK, Mueller-Kliesera W (2000) High lactate levels predict likelihood of metastasis, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 16(4):916–921

    Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  Google Scholar 

  • Webb SD, Sherratt JA, Fish RG (1999a) Alterations in proteolytic activity at low pH and its association with invasion: A theoretical model. Clin Exp Metastas 17:397–407

    Google Scholar 

  • Webb SD, Sherratt JA, Fish RG (1999b) Mathematical modelling of tumour acidity: Regulation of intracellular pH. J Theor Biol 196:237–250

    Google Scholar 

  • Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    Article  Google Scholar 

Download references

Acknowledgments

M.A. was supported by a studentship from the Engineering and Physical Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Webb.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Husari, M., Murdoch, C. & Webb, S.D. A cellular automaton model examining the effects of oxygen, hydrogen ions and lactate on early tumour growth. J. Math. Biol. 69, 839–873 (2014). https://doi.org/10.1007/s00285-013-0719-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-013-0719-x

Keywords

Mathematics Subject Classification (2000)

Navigation