Skip to main content
Log in

Threshold virus dynamics with impulsive antiretroviral drug effects

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The purposes of this paper are twofold: to develop a rigorous approach to analyze the threshold behaviors of nonlinear virus dynamics models with impulsive drug effects and to examine the feasibility of virus clearance following the Manuals of National AIDS Free Antiviral Treatment in China. An impulsive system of differential equations is developed to describe the within-host virus dynamics of both wild-type and drug-resistant strains when a combination of antiretroviral drugs is used to induce instantaneous drug effects at a sequence of dosing times equally spaced while drug concentrations decay exponentially after the dosing time. Threshold parameters are derived using the basic reproduction number of periodic epidemic models, and are used to depict virus clearance/persistence scenarios using the theory of asymptotic periodic systems and the persistence theory of discrete dynamical systems. Numerical simulations using model systems parametrized in terms of the antiretroviral therapy recommended in the aforementioned Manuals illustrate the theoretical threshold virus dynamics, and examine conditions under which the impulsive antiretroviral therapy leads to treatment success. In particular, our results show that only the drug-resistant strain can dominate (the first-line treatment program guided by the Manuals) or both strains may be rapidly eliminated (the second-line treatment program), thus the work indicates the importance of implementing the second-line treatment program as soon as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and the dynamics of infectious diseases. Ecol Lett 9: 467–484

    Article  Google Scholar 

  • Anderson RM, May RM (1991) Infectious diseases of humans: dynamics and control. Oxford Science Publications, Oxford

    Google Scholar 

  • Bacaër N (2007) Approximation of the basic reproduction number R 0 for vector-borne diseases with a periodic vector population. Bull Math Biol 69: 1067–1091

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Ait Dads E (2011) Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J Math Biol 62: 741–762

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër N, Guernaoui S (2006) The epidemic threshold of vector-borne diseases with seasonality. The case of cutaneous leishmaniasis in Chichaoua, Morocco. J Math Biol 53: 421–436

    Article  MathSciNet  MATH  Google Scholar 

  • Berry RM, Nowak MA (1994) Defective escape mutants of HIV. J Theor Biol 171: 387–395

    Article  Google Scholar 

  • Bonhoeffer S, May RM, Shaw GM, Nowak MA (1997) Virus dynamics and drug therapy. Proc Natl Acad Sci USA 94: 6971–6976

    Article  Google Scholar 

  • Coffin J (1995) HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267: 483–489

    Article  Google Scholar 

  • Dai Z, Zhu Z (2005) The protease inhibitor ritonavir. Chin Pharm J 35: 495–496

    Google Scholar 

  • Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley, New York

    Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations. J Math Biol 28: 365–382

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface 7: 873–885

    Article  Google Scholar 

  • Fisher AG, Ensoli B, Looney D, Rose A, Gallo RC, Saag MS, Shaw GM, Hahn BH, Wong-Staal F (1988) Biologically diverse molecular variants within a single HIV-1 isolate. Nature 334: 444–447

    Article  Google Scholar 

  • Freedman HI, Moson P (1990) Persistence definitions and their connections. Proc Am Math Soc 109: 1025–1033

    Article  MathSciNet  MATH  Google Scholar 

  • Frost SD, McLean AR (1994) Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection. AIDS 8: 323–332

    Article  Google Scholar 

  • Grassly NC, Fraser C (2006) Seasonal infectious disease epidemiology. Proc R Soc B 273: 2541–2550

    Article  Google Scholar 

  • Heffernan JM, Smith RJ, Wahl LM (2005) Perspectives on the basic reproductive ratio. J R Soc Interface 2: 281–293

    Article  Google Scholar 

  • Hess P (1991) Periodic-parabolic boundary value problems and positivity. Longman, New York

    MATH  Google Scholar 

  • Janeway C, Travers P, Walport M, Shlomchik M (2001) Immunobiology: the immune system in health and disease. Garland Publishing, New York

    Google Scholar 

  • Kirschner D (1996) Using mathematics to understand HIV immune dynamics. Notices AMS 43: 191–202

    MathSciNet  MATH  Google Scholar 

  • Kirschner DE, Webb GF (1997) Understanding drug resistance for monotherapy treatment of HIV infection. Bull Math Biol 59: 763–785

    Article  MATH  Google Scholar 

  • Korthals Altes H, Jansen V (2000) Intra-host competition between nef-defective escape mutants and wild-type human immunodeficiency virus type 1. Proc R Soc Lond B 267: 183–189

    Article  Google Scholar 

  • Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, Singapore

    MATH  Google Scholar 

  • Liu L, Zhao X-Q, Zhou Y (2010) A tuberculosis model with seasonality. Bull Math Biol 72: 931–952

    Article  MathSciNet  MATH  Google Scholar 

  • Lou Y, Zhao X-Q (2010) A climate-based malaria transmission model with structured vector population. SIAM J Appl Math 70: 2023–2044

    Article  MathSciNet  MATH  Google Scholar 

  • Lou J, Chen L, Ruggeri T (2009) An impulsive differential model on post exposure prophylaxis to HIV-1 exposed individual. J Biol Syst 17: 659–683

    Article  MathSciNet  Google Scholar 

  • Magal P, Zhao X-Q (2005) Global attractors and steady states for uniformly persistent dynamical systems. SIAM J Math Anal 37: 251–275

    Article  MathSciNet  MATH  Google Scholar 

  • McLean AR, Nowak MA (1992) Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV. AIDS 6: 71–79

    Article  Google Scholar 

  • Nakata Y, Kuniya T (2010) Global dynamics of a class of SEIRS epidemic models in a periodic environment. J Math Anal Appl 363: 230–237

    Article  MathSciNet  MATH  Google Scholar 

  • Nowak M, May RM (2000) Virus dynamics: mathematical principles of immunology and virology. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Perelson AS (1989) Modeling the interaction of the immune system with HIV. Mathematical and statistical approaches to AIDS epidemiology. In: Castillo-Chaves C (ed) Lecturer notes in biomathematics, vol 83. Springer, New York, pp 350–370

  • Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41: 3–44

    Article  MathSciNet  MATH  Google Scholar 

  • Perelson AS, Kirschner DE, Boer RD (1993) Dynamics of HIV Infection of CD4+ T cells. Math Biosci 114: 81–125

    Article  MATH  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271: 1582–1586

    Article  Google Scholar 

  • Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD (1997a) Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387: 188–191

    Article  Google Scholar 

  • Perelson AS, Essunger P, Ho DD (1997b) Dynamics of HIV-1 and CD4+ lymphocytes in vivo. AIDS 11(Suppl A): S17–S24

    Google Scholar 

  • Rong L, Feng Z, Perelson AS (2007) Emergence of HIV-1 drug resistance during antiretroviral treatment. Bull Math Biol 69: 2027–2060

    Article  MathSciNet  MATH  Google Scholar 

  • Samanta GP (2010) Analysis of a nonautonomous HIV/AIDS model. Math Model Nat Phenom 5: 70–95

    Article  MathSciNet  MATH  Google Scholar 

  • Shen L, Peterson S, Sedaghat A, McMahon M, Callender M, Zhang H, Zhou Y, Pitt E, Anderson K, Acosta E, Siliciano R (2008) Dose-response curve slope sets class-specific limits on inhibitory potential of anti-HIV drugs. Nat Med 14: 762–766

    Article  Google Scholar 

  • Smith HL, Thieme HR (2011) Dynamical systems and population persistence. AMS, Providence

    MATH  Google Scholar 

  • Smith RJ, Wahl LM (2004) Distinct effects of protease and reverse transcriptase inhibition in an immunological model of HIV-1 infection with impulsive drug effects. Bull Math Biol 66: 1259–1283

    Article  MathSciNet  Google Scholar 

  • Smith RJ, Wahl LM (2005) Drug resistance in an immunological model of HIV-1 infection with impulsive drug effects. Bull Math Biol 67: 783–813

    Article  MathSciNet  Google Scholar 

  • Smith HL, Waltman P (1995) The theory of the chemostat. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Thieme HR (1992) Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous differential equations. J Math Biol 30: 755–763

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (1993) Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J Math Anal 24: 407–435

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (1999) Uniform weak implies uniform strong persistence for non-autonomous semiflows. Proc Am Math Soc 127: 2395–2403

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme HR (2000) Uniform persistence and permanence for non-autonomous semiflows in population biology. Math Biosci 166: 173–201

    Article  MathSciNet  MATH  Google Scholar 

  • Usmani RA (1987) Applied linear algebra. Marcel Dekker, New York

    MATH  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180: 29–48

    Article  MathSciNet  MATH  Google Scholar 

  • Wahl LM, Nowak MA (2000) Adherence and drug resistance: predictions for therapy outcome. Proc R Soc Lond B 267: 835–843

    Article  Google Scholar 

  • Wang W, Zhao X-Q (2008) Threshold dynamics for compartmental epidemic models in periodic environments. J Dyn Differ Equ 20: 699–717

    Article  MATH  Google Scholar 

  • Wesley CL, Allen LJ, Langlais M (2010) Models for the spread and persistence of hantavirus infection in rodents with direct and indirect transmission. Math Biosci Eng 7: 195–211

    Article  MathSciNet  MATH  Google Scholar 

  • Wodarz D, Lloyd AL (2004) Immune responses and the emergence of drug-resistant virus strains in vivo. Proc R Soc Lond B 271: 1101–1109

    Article  Google Scholar 

  • Zhang T, Teng Z (2007) On a nonautonomous SEIRS model in epidemiology. Bull Math Biol 69: 2537–2559

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang F, Zhao X-Q (2007a) A periodic epidemic model in a patchy environment. J Math Anal Appl 325: 496–516

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang F, Zhao X-Q (2007b) Global dynamics of a nonautonomous predator-prey system with dispersion. Dyn Contin Discrete Impuls Syst A Math Anal 14: 81–97

    Article  MATH  Google Scholar 

  • Zhao X-Q (2003) Dynamical systems in population biology. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, J., Lou, Y. & Wu, J. Threshold virus dynamics with impulsive antiretroviral drug effects. J. Math. Biol. 65, 623–652 (2012). https://doi.org/10.1007/s00285-011-0474-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0474-9

Keywords

Mathematics Subject Classification (2000)

Navigation