Skip to main content

Advertisement

Log in

An islet population model of the endocrine pancreas

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

An islet population model is proposed for pancreatic insulin secretion. Without detailing the chain of biochemical events giving rise to the delivery of insulin packets, the effect of the islets’ bursting response to varying glucose concentration is described by a simple second order nonlinear model, of the same functional form for all islets, but with a random distribution of parameter values over the one million islets considered. The islet equations are coupled to a traditional model of the glucose/insulin dynamics to complete a description of the feed-back control of the glucose/insulin system. The model is thus based upon the completely random cooperation of a large number of independent controllers, all reacting to the same prevailing plasma glucose concentrations, but with distributed reaction characteristics. It is shown that the proposed model is able to replicate in silico different observed phenomena such as low frequency glycemia–insulinemia oscillations (ultradian oscillations, with a period between 50 and 150 min, amplified by constant glucose administration and entrained by an oscillating exogenous glucose infusion), as well as concordant induction of high-frequency insulin oscillations by a rapid periodic pulsatile glucose infusion. In order to reproduce by simulation all of the above observed phenomena, a single set of (hyper-)parameters has been used throughout, showing that it is indeed possible that a single model may explain the results of several published experimental protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson GE, Kologlu Y, Papadopoulus C (1967) Fluctuations in postabsorptive blood glucose in relation to insulin release. Metabolism 16: 586–596

    Article  Google Scholar 

  • Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic β-cell. Prog Biophys Mol Biol 54: 87–143

    Article  Google Scholar 

  • Bennet DL, Gourley SA (2004) Asymptotic properties of a delay differential equation model for the interaction of glucose with plasma and interstitial insulin. Appl Math Comput 151: 189–207

    Article  MathSciNet  Google Scholar 

  • Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Am J Physiol 236: 667–677

    Google Scholar 

  • Bertram R, Satin L, Zhang M, Smolen P, Sherman A (2004) Calcium and glycolisis mediate multiple bursting modes in pancreatic islets. Biophysics 87: 3074–3087

    Article  Google Scholar 

  • Bertram R, Sherman A (2004) A calcium-based phantom bursting model for pancreatic islets. Bull Math Biol 66: 1313–1344

    Article  MathSciNet  Google Scholar 

  • Bertuzzi A, Salinari S, Mingrone G (2007) Insulin granule trafficking in β-cells: mathematical model of glucose-induced insulin secretion. Am J Physiol Endocrinol Metab 293: E396–E409

    Article  Google Scholar 

  • Blackman RB, Tukey JV (1958) The measurement of power spectra. Dover Publications, New York

    Google Scholar 

  • Bowden CR, Bergman RN, Marsh DJ (1980) Cause of glucose oscillations during glucose infusion: periodic variation in glucose uptake. Am J Physiol 238: E395–E407

    Google Scholar 

  • Chou HF, Ipp E (1990) Pulsatile insulin secretion in isolated rat islets. Diabetes 39: 112–117

    Article  Google Scholar 

  • Clausen JO, Borch-Johnsen K, Bergman RN, Hougaard P, Winther K, Pedersen O (1996) Insulin sensitivity index, acute insulin response, and glucose effectiveness in a population-based sample of 380 young healthy caucasians. J Clin Invest 98: 1195–1209

    Article  Google Scholar 

  • Cook D.L. (1983) Isolated islets of Langerhans have slow oscillations of electrical activity. Metabolism 32: 681–685

    Article  Google Scholar 

  • De Gaetano A, Arino O (2000) Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 40: 136–168

    Article  MATH  MathSciNet  Google Scholar 

  • Eddlestone GT, Goncalves A, Bangham JA (1984) Electrical coupling between cells in islets of Langerhans from Mouse. J Membr Biol 77: 1–14

    Article  Google Scholar 

  • Engelborghs K, Lemaire V, Bélair J, Roose D (2001) Numerical bifurcation analysis of delay differential equations arising from physiological modeling. J Math Biol 42: 361–385

    Article  MATH  MathSciNet  Google Scholar 

  • Frankel BJ, Atwater I, Grodsky GM (1981) Calcium affects insulin release and membrane potential in islet beta-cells. Am J Physiol Cell Physiol 240: C64–C72

    Google Scholar 

  • Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 1: 223–287

    Article  Google Scholar 

  • Gilon P, Ravier MA, Jonas JC, Henquin JC (2002) Control mechanisms of the oscillations of insulin secretion in vitro and in vivo. Diabetes 51: S144–S151

    Article  Google Scholar 

  • Goodner CJ, Koerker DJ, Stagner JI, Samols E (1991) In vitro pancreatic hormonal pulses are less regular and more frequent than in vivo. Am J Physiol Endocrinol Metab 260: E422–E429

    Google Scholar 

  • Goodner CJ, Walike BC, Koerker DJ, Ensinck JW, Brown AC, Chideckel EW, Palmer J, Kalnasy L (1977) Insulin, glucagon and glucose exhibit synchronous sustained oscillations in fasting monkeys. Science 195: 177–179

    Article  Google Scholar 

  • Henquin JC, Meissner HP, Schmeer W (1982) Cyclic variations of glucose-induced electrical activity in pancreatic B cells. Pflugers Arch 393: 322–327

    Article  Google Scholar 

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco

    MATH  Google Scholar 

  • Keener J, Sneyd J (1998) Mathematical physiology. Springer, New York

    MATH  Google Scholar 

  • Lang DA, Matthews DR, Peto J, Turner RC (1979) Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. N Engl J Med 301: 1023–1027

    Article  Google Scholar 

  • Li J, Kuang Y, Mason CC (2006) Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J Theor Biol 242: 722–735

    Article  MathSciNet  Google Scholar 

  • Liptser RS, Shiryaev AN (1974) Statistics of random processes. Springer, Berlin

    Google Scholar 

  • Longo EA, Tornheim K, Deeney JT, Varnum BA, Tillotson D, Prentki M, Corkey BE (1991) Oscillations in cytosolic free Ca2+, oxygen consumption, and insulin secretion in glucose-stimulated Rat pancreatic islets. J Biol Chem 266: 9314–9319

    Google Scholar 

  • Mari A, Camastra S, Toschi E, Giancaterini A, Gastaldelli A, Mingrone G, Ferranini E (2001) A model for glucose control of insulin secretion during 24 hours of free living. Diabetes 50(suppl 1): S164–S168

    Article  Google Scholar 

  • Mari A, Tura A, Gastaldelli A, Ferranini E (2002) Assessing insulin secretion by modeling in multiple-meal tests. Role of potentiation. Diabetes 51(suppl 1): S221–S226

    Article  Google Scholar 

  • Matthews DR, Hermansen K, Connolly AA, Gray D, Schmitz O, Clark A, Orskov H, Turner RC (1987) Greater in vivo than in vitro pulsatility of insulin secretion with synchronized insulin and somatostatin secretory pulses. Endocrinology 120: 2272–2278

    Article  Google Scholar 

  • Meissner HP (1976) Electrophysiological evidence for coupling between beta-cells of pancreatic islets. Nature 262: 502

    Article  Google Scholar 

  • Millsaps K, Pohlhausen K (1975) A mathematical model for glucose insulin interaction. Math Biosci 23: 237–251

    Article  MATH  Google Scholar 

  • Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232: 194–201

    Article  Google Scholar 

  • Ookhtens M, Marsh DJ, Smith SW, Bergman RN, Yates FE (1974) Fluctuations of plasma glucose and insulin in conscious dogs receiving glucose infusions. Am J Physiol 226: 910–919

    Google Scholar 

  • Palumbo P, Panunzi S, De Gaetano A (2007) Qualitative behavior of a family of of delay-differential equations models of the glucose-insulin regulatory system. Discrete Contin Dyn Syst Ser B 7(2): 399–424

    MATH  MathSciNet  Google Scholar 

  • Panunzi S, Palumbo P, De Gaetano A (2007) A discrete single delay model for the intra-venous glucose tolerance test. Theor Biol Med Model 4: 35

    Article  Google Scholar 

  • Pedersen MG, Bertram R, Sherman A (2005) Intra- and inter-islet synchronization of metabolically driven insulin secretion. Biophys J 89: 107–119

    Article  Google Scholar 

  • Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88: 2297–2301

    Article  MATH  MathSciNet  Google Scholar 

  • Polonski KS, Given BD, Van Cauter E (1988) Twenty four hour profiles and pulsatile patterns of insulin secretion in healthy and obese subjects. J Clin Invest 81: 442–448

    Article  Google Scholar 

  • Pørksen N (2002) The in vivo regulation of pulsatile insulin secretion. Diabetologia 45: 3–20

    Article  Google Scholar 

  • Pørksen N, Juhl C, Hollingdal M, Pincus SM, Sturis J, Veldhuis JD, Schmitz O (2000) Concordant induction of rapid in vivo pulsatile insulin secretion by recurrent punctuated glucose infusions. Am J Physiol Endocrinol Metab 278: E162–E170

    Google Scholar 

  • Pørksen N, Munn S, Steers J, Vore S, Veldhuis J, Butler P (1995) Pulsatile insulin secretion accounts for 70% of total insulin secretion during fasting. Am J Physiol 269: E478–E488

    Google Scholar 

  • Pørksen N, Nyholm B, Veldhuis JD, Butler PC, Schmitz O (1997) In humans at least 75% of insulin secretion arises from punctuated insulin secretory bursts. Am J Physiol Endocrinol Metab 273: E908–E914

    Google Scholar 

  • Ravier MA, Sehlin AJ, Henquin JC (2002) Disorganization of cytoplasmic Ca2+ oscillations and pulsatile insulin secretion in islets from ob/ob mice. Diabetologia 45: 1154–1163

    Article  Google Scholar 

  • Santos RM, Rosario LM, Nadal A, Garcia-Sancho J, Soria B, Valdeolmillos M (1991) Widespread synchronous [Ca 2+] i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch 418: 417–422

    Article  Google Scholar 

  • Sha L, Westerlund J, Szurszewski JH, Bergsten P (2001) Amplitude modulation of pulsatile insulin secretion by pancreatic ganglion neurons. Diabetes 50: 51–55

    Article  Google Scholar 

  • Shapiro ET, Tillil H, Polonsky KS, Fang VS, Rubenstein AH, Van Cauter E (1988) Oscillations in insulin secretion during constant glucose infusion in normal man: relationship to changes in plasma glucose. J Clin Endocrinol Metab 67: 307–314

    Article  Google Scholar 

  • Simon C, Brandenberger G, Follenius M (1987) Ultradian oscillations of plasma glucose, insulin, and C-peptide in man during continuous enteral nutrition. J Clin Endocrinol Metab 64: 669–674

    Article  Google Scholar 

  • Simon C, Follenius M, Brandenberger G (1987) Postprandial oscillations of plasma glucose, insulin and C-peptide in man. Diabetologia 30: 769–773

    Article  Google Scholar 

  • Sirek A, Vaitkus P, Norwich KH, Sirek OV, Hunger RH, Harris V (1985) Secretory patterns of glucoregulatory hormones in prehepatic circulation of dogs. Am J Physiol 249: E34–E42

    Google Scholar 

  • Smolen P (1995) A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics. J Theor Biol 174: 137–148

    Article  Google Scholar 

  • Stagner JI, Samols E, Weir GC (1980) Sustained oscillations of insulin, glucagon and somatostatin from the isolated canine pancreas during exposure to a constant glucose concentration. J Clin Invest 65: 939–942

    Article  Google Scholar 

  • Sturis J, Blackman JD, Van Cauter E, Polonski KS (1991) Entrainment of pulsatile insulin secretion by oscillatory glucose infusion. J Clin Invest 87: 439–445

    Article  Google Scholar 

  • Sturis J, Polonsky KS, Mosekilde E, Van Cauter E (1991) Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Am J Physiol 260: E801–E809

    Google Scholar 

  • Sturis J, Pugh WL, Tang J, Ostrega DM, Polonsky JS, Polonsky KS (1994) Alterations in pulsatile insulin secretion in the Zucker diabetic fatty rat. Am J Physiol 267: E250–E259

    Google Scholar 

  • Tolić IM, Mosekilde E, Sturis J (2000) Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. J Theor Biol 207: 361–375

    Article  Google Scholar 

  • Tornheim K (1997) Are metabolic oscillations responsible for normal oscillatory insulin secretion?. Diabetes 46: 1375–1380

    Article  Google Scholar 

  • Toschi E, Camastra S, Sironi AM, Masoni A, Gastaldelli A, Mari A, Ferranini E, Natali A (2002) Effect of acute hyperglycemia on insulin secretion in humans. Diabetes 51(Suppl.1): S130–S133

    Article  Google Scholar 

  • Tsaneva-Atanasova K, Zimliki CL, Bertram R, Sherman A (2006) Diffusion of calcium and metabolites in pancreatic islets: killing oscillations with a pitchfork. Biophys J 90: 3434–3446

    Article  Google Scholar 

  • Valdeolmillos M, Gomis A, Sanchez-Andres JV (1996) In vivo synchronous membrane potential oscillations in Mouse pancreatic β-cells: lack of co-ordination between islets. J Physiol 493: 9–18

    Google Scholar 

  • Van Cauter E, Desir D, Decoster C, Féry F, Balasse EO (1989) Nocturnal decrease of glucose tolerance during constant glucose infusion. J Clin Endocrinol Metab 69: 604–611

    Article  Google Scholar 

  • Verdonk CA, Rizza RA, Gerich JE (1981) Effects of plasma glucose concentration on glucose utilization and glucose clearance in normal man. Diabetes 30: 535–537

    Article  Google Scholar 

  • Zhang M, Goforth P, Bertram R, Sherman A, Satin L (2003) The Ca2+ dynamics of isolated Mouse β-cells and islets: implications for mathematical models. Biophys J 84: 2852–2870

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Gaetano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palumbo, P., De Gaetano, A. An islet population model of the endocrine pancreas. J. Math. Biol. 61, 171–205 (2010). https://doi.org/10.1007/s00285-009-0297-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0297-0

Keywords

Mathematics Subject Classification (2000)

Navigation