Skip to main content
Log in

On a stochastic reaction–diffusion system modeling pattern formation on seashells

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Starting from the Gierer–Meinhardt setting, we propose a stochastic model to characterize pattern formation on seashells under the influence of random space–time fluctuations. We prove the existence of a positive solution for the resulting system and perform numerical simulations in order to assess the behavior of the solution in comparison with the deterministic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen EJ, Novosel SJ, Zhang Z (1998) Finite element and difference approximation of some linear stochastic partial differential equations. Stoch Stoch Rep 64: 117–142

    MATH  MathSciNet  Google Scholar 

  • Assing S (1999) Comparison of systems of stochastic partial differential equations. Stoch Process Appl 82: 259–282

    Article  MATH  MathSciNet  Google Scholar 

  • Bolley C, Crouzeix M (1978) Conservation de la positivité lors de la discrétization des problèmes d’évolution paraboliques. RAIRO Anal Numer 12(3): 237–245

    MATH  MathSciNet  Google Scholar 

  • Chow PL (2007) Stochastic partial differential equations. Chapman & Hall, London

    MATH  Google Scholar 

  • Da Prato G, Zabczyk J (1992) Stochastic equations in infinite dimensions. Cambridge University Press, London

    MATH  Google Scholar 

  • Eriksson K, Johnson C, Logg A (2002) Explicit time-stepping for stiff ODE’s. Chalmers Finite Element Center PREPRINT 2002-7, Göteborg

  • Evans LC (1999) Partial differential equations. AMS, Providence

    Google Scholar 

  • Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12: 30–39

    Article  Google Scholar 

  • Granero-Porati MI, Porati A (1984) Temporal organization in a morphogenetic field. J Math Biol 20: 153–157

    Article  MATH  MathSciNet  Google Scholar 

  • Ishikawa M, Miyajima K (2005) Analyses of pattern formation processes in stochastic activator-inhibitor systems with saturation in growth domains. Int J Innov Comp Inf Control 1(3): 303–311

    Google Scholar 

  • Jiang H (2006) Global existence of solutions of an activator-inhibitor system. Discrete Contin Dyn Syst 14: 737–751

    Article  MATH  MathSciNet  Google Scholar 

  • Kelkel J, Surulescu C (2009) A weak solution approach to a reaction-diffusion system modeling pattern formation on seashells. Math Methods Appl Sci (to appear)

  • Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer, Berlin

    MATH  Google Scholar 

  • Meinhardt H (2003) The algorithmic beauty of seashells. Springer, Berlin

    Google Scholar 

  • Meinhardt H, Gierer A (1974) Applications of a theory of biological pattern formation based on lateral inhibition. J Cell Sci 15: 321–346

    Google Scholar 

  • Meinhardt H, Klingler M (1987) A model for pattern formation on the shells of molluscs. J Theor Biol 126: 63–69

    Article  MathSciNet  Google Scholar 

  • Moro E, Schurz H (2005) Non-negativity preserving numerical algorithms for stochastic differential equations. arXiv: arXiv:math/0509724v1 [math.NA]

  • Murray JD (1982) Parameter space for turing instability in reaction diffusion mechanisms: a comparison of models. J Theor Biol 98: 143–163

    Article  Google Scholar 

  • Murray JD (2003) Mathematical biology II. Springer, Berlin

    Google Scholar 

  • Rothe F (1984) Global solutions of reaction-diffusion systems. Lecture notes in math, vol 1072. Springer, Berlin

    Google Scholar 

  • Taniguchi T (1990) On sufficient conditions for non-explosion of solutions to stochastic differential equations. J Math Anal Appl 153: 549–561

    Article  MATH  MathSciNet  Google Scholar 

  • Taniguchi T (1992) Successive approximation to solutions of stochastic differential equations. J Differ Equ 96: 152–169

    Article  MATH  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237: 37

    Article  Google Scholar 

  • Walsh JB (1986) An introduction to stochastic partial differential equations. Lecture notes in mathematics, vol 1180. Springer, Berlin, pp 265–439

  • Wei J, Winter M (2001) Spikes for the two-dimensional Gierer-Meinhardt system: the weak coupling case. J Nonlinear Sci 11(6): 415–458

    Article  MATH  MathSciNet  Google Scholar 

  • Wei J, Winter M (2002) Spikes for the Gierer-Meinhardt system in two dimensions: the strong coupling case. J Differ Equ 178(2): 478–518

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Surulescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelkel, J., Surulescu, C. On a stochastic reaction–diffusion system modeling pattern formation on seashells. J. Math. Biol. 60, 765–796 (2010). https://doi.org/10.1007/s00285-009-0284-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0284-5

Keywords

Mathematics Subject Classification (2000)

Navigation