Skip to main content
Log in

Limit theorems for patterns in phylogenetic trees

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Studying the shape of phylogenetic trees under different random models is an important issue in evolutionary biology. In this paper, we propose a general framework for deriving detailed statistical results for patterns in phylogenetic trees under the Yule–Harding model and the uniform model, two of the most fundamental random models considered in phylogenetics. Our framework will unify several recent studies which were mainly concerned with the mean value and the variance. Moreover, refined statistical results such as central limit theorems, Berry–Esseen bounds, local limit theorems, etc., are obtainable with our approach as well. A key contribution of the current study is that our results are applicable to the whole range of possible sizes of the pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aldous DJ (1991) The continuum random tree II: an overview. In: Barlow NT, Bingham NH (eds) Stochastic analysis. Cambridge University Press, Cambridge, pp 23–70

  • Baron G, Drmota M, Mutafchiev L (1996) Predecessors in random mappings. Comb Prob Comput 5: 317–335

    MATH  MathSciNet  Google Scholar 

  • Blum M, François O (2005) External branch length and minimal clade size under the neutral coalescent. Adv Appl Prob 37: 647–662

    Article  MATH  Google Scholar 

  • Blum M, Bortolussi N, Durand E, François O (2006a) APTreeshape: statistical analysis of phylogenetic tree shape. Bioinformatics 22: 363–364

    Google Scholar 

  • Blum M, François O, Janson S (2006b) The mean, variance and limiting distributions of two statistics sensitive to phylogenetic tree balance. Ann Appl Prob 16: 2195–2214

    Article  MATH  Google Scholar 

  • Chern H-H, Fuchs M, Hwang H-K (2007) Phase changes in random point quadtrees. ACM Trans Alg 3:51

    Google Scholar 

  • Darwin C (1859) The origin of species, reprinted by Penguin Books. London

  • Drmota M, Hwang H-K (2005) Profile of random trees: correlation and width of random recursive trees and binary search trees. Adv Appl Prob 37: 321–341

    Article  MATH  MathSciNet  Google Scholar 

  • Drmota M, Janson S, Neininger R (2008a) A functional limit theorem for the profile of search trees. Ann Appl Prob 18: 288–333

    Article  MATH  MathSciNet  Google Scholar 

  • Drmota M, Gittenberger B, Panholzer A, Prodinger H, Ward MD (2008b) On the shape of the fringe of various types of random trees. Math Math Appl Sci (in press)

  • Feng Q, Mahmoud H, Panholzer A (2008) Phase changes in subtree varieties in random recursive trees and binary search trees. SIAM J Discrete Math 22: 160–184

    Article  MATH  MathSciNet  Google Scholar 

  • Fill JA, Kapur N (2004) Limiting distributions for additive functionals on Catalan trees. Theor Comp Sci 326: 69–102

    Article  MATH  MathSciNet  Google Scholar 

  • Flajolet P, Sedgewick R (2009) Analytic combinatorics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Flajolet P, Gourdon X, Martinez C (1997) Patterns in random binary search trees. Random Struct Alg 11: 223–224

    Article  MATH  MathSciNet  Google Scholar 

  • Flajolet P, Sedgewick R (1995) An introduction to the analysis of algorithms. Addison-Wesley Professional, Reading

  • Fuchs M (2008) Subtree sizes in recursive trees and binary search trees: Berry–Esseen bound and Poisson approximation. Comb Prob Comput 17: 661–680

    MATH  Google Scholar 

  • Fuchs M, Hwang H-K, Neininger R (2007) Profiles of random trees: limit theorems for random recursive trees and binary search trees. Algorithmica 46: 367–407

    Article  MathSciNet  Google Scholar 

  • Harding EF (1971) The probabilities of rooted tree-shapes generated by random bifurcation. Adv Appl Prob 3: 44–77

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang H-K (2003) Second phase changes in random m-ary search trees and generalized quicksort: convergence rates. Ann Prob 31: 609–629

    Article  MATH  Google Scholar 

  • Hwang H-K (2007) Profiles of random trees: plane-oriented recursive trees. Random Struct Alg 30: 380–413

    Article  MATH  Google Scholar 

  • Hwang H-K, Neininger R (2002) Phase change of limit laws in the quicksort recurrences under varying toll functions. SIAM J Comput 31: 1687–1722

    Article  MATH  MathSciNet  Google Scholar 

  • Hwang H-K, Nicodème P, Park G, Szpankowski W (2008) Profiles of tries. SIAM J Comput 38: 1821–1880

    MathSciNet  Google Scholar 

  • Knuth DE (1997) The art of computer programming, vol 1, 3rd edn. In: Fundamental algorithms. Addison-Wesley, Reading

  • Knuth DE (1998) The art of computer programming, vol 2, 3rd edn. In: Seminumerical algorithms. Addison-Wesley, Reading

  • Knuth DE (1998) The art of computer programming, vol. 3, 2nd edn. In: Sorting and searching. Addison-Wesley, Reading

  • Loève M (1977) Probability theory. I, 4th edn. Springer, New York

    MATH  Google Scholar 

  • McKenzie A, Steel M (2000) Distribution of cherries for two models of trees. Math Biosci 164: 81–92

    Article  MATH  MathSciNet  Google Scholar 

  • McKenzie A, Steel M (2001) Properties of phylogenetic trees generated by Yule-type specification models. Math Biosci 170: 91–112

    Article  MATH  MathSciNet  Google Scholar 

  • Mooers AO, Heard SB (1997) Inferring evolutionary process from phylogenetic tree shape. Q Rev Biol 72: 31–54

    Article  Google Scholar 

  • Mooers AO, Heard SB (2002) Using tree shape. Syst Biol 51: 833–834

    Article  Google Scholar 

  • Pemantle R (2000) Generating functions with high-order poles are nearly polynomial. In: Mathematics and computer science (Versailles, 2000). Birkhäuser, Baesl, pp 305–321

  • Pemantle R, Wilson MC (2002) Asymptotics of multivariate sequences I: smooth points of the singular variety. J Comb Theory Ser A 97: 129–161

    Article  MATH  MathSciNet  Google Scholar 

  • Pemantle R, Wilson MC (2004) Asymptotics of multivariate sequences, Part II: multiple points of the singular variety. Comb Prob Comp 13: 735–761

    Article  MATH  MathSciNet  Google Scholar 

  • Pemantle R, Wilson MC (2008) Twenty combinatorial examples of asymptotics derived from multivariate generating functions. SIAM Rev 20: 199–272

    Article  MathSciNet  Google Scholar 

  • Petrov VV (1975) Sums of indepedent random variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. Springer, New York

    Google Scholar 

  • Rosenberg NA (2006) The mean and variance of the numbers of r-pronged nodes and r-caterpillars in Yule-generated genealogical trees. Ann Comb 10: 129–146

    Article  MATH  MathSciNet  Google Scholar 

  • Semple C, Steel M (2003) Phylogenetics, Oxford University Press, Oxford

  • Stanley RP (1997) Enumerative combinatorics, vol 1. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Stanley RP (1999) Enumerative combinatorics, vol 2. Cambridge University Press, Cambridge

    Google Scholar 

  • Szpankowski W (2001) Average-case analysis of algorithms on sequences. Wiley, New York

    MATH  Google Scholar 

  • Yule GU (1924) A mathematical theory of evolution, based on the conclusions of Dr. J. C. Willies. Philos Trans R Soc London B 213: 21–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, H., Fuchs, M. Limit theorems for patterns in phylogenetic trees. J. Math. Biol. 60, 481–512 (2010). https://doi.org/10.1007/s00285-009-0275-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0275-6

Keywords

Mathematics Subject Classification (2000)

Navigation