Skip to main content
Log in

Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In the large amoeboid organism Physarum, biochemical oscillators are spatially distributed throughout the organism and their collective motion exhibits phase waves, which carry physiological signals. The basic nature of this wave behaviour is not well-understood because, to date, an important effect has been neglected, namely, the shuttle streaming of protoplasm which accompanies the biochemical rhythms. Here we study the effects of self-consistent flow on the wave behaviour of oscillatory reaction-diffusion models proposed for the Physarum plasmodium, by means of numerical simulation for the dispersion relation and weakly nonlinear analysis for derivation of the phase equation. We conclude that the flow term is able to increase the speed of phase waves (similar to elongation of wave length). We compare the theoretical consequences with real waves observed in the organism and also point out the physiological roles of these effects on control mechanisms of intracellular communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliev R.R. (1994). Oscillation phase dynamics in the Belousov–Zhabotinsky reaction—implementation to image-processing. J. Phys. Chem. 98: 3999–4002

    Article  Google Scholar 

  2. Aliev R.R. and Biktashev V.N. (1994). Dynamics of the oscillation phase distribution in the BZ reaction. J. Phys. Chem. 98: 9676–9681

    Article  Google Scholar 

  3. Kamiya N. (1959). Protoplasmic streaming. Protoplasmatologia 8: 1–199

    MathSciNet  Google Scholar 

  4. Kobayashi R., Tero A. and Nakagaki T. (2006). Mathematical model for rhythmic amoeboid movement in the true slime mold. J. Math. Biol. 53: 273–286

    Article  MATH  MathSciNet  Google Scholar 

  5. Kuramoto Y. and Tsuzuki T. (1975). Formation of dissipative structures in reaction-diffusion systems—reductive perturbation approach. Prog. Theor. Phys. 54: 687–699

    Article  Google Scholar 

  6. Kuramoto Y. and Yamada T. (1976). Pattern formation in oscillatory chemical-reactions. Prog. Theor. Phys. 56: 724–740

    Article  MathSciNet  Google Scholar 

  7. Matsumoto K., Ueda T. and Kobatake Y. (1988). Reversal of thermotaxis with oscillatory stimulation in the plasmodium of Physarum polycephalum. J. Theor. Biol. 131: 175–182

    Article  Google Scholar 

  8. Miyake Y., Tabata S., Murakami H., Yano M. and Shimizu H. (1996). Environment-dependent self-organization of positional information field in chemotaxis of Physarum polycephalum. J. Theor. Biol. 178: 341–353

    Article  Google Scholar 

  9. Murray J.D. (1989). Mathematical Biology. Springer, Heidelberg

    MATH  Google Scholar 

  10. Nakagaki T., Yamada H. and Masami I. (1999). Reaction-diffusion-advection model for pattern formation of rhythmic contraction in a giant amoeboid cell of the Physarum plasmodium. J. Theor. Biol. 197: 497–506

    Article  Google Scholar 

  11. Nakagaki T., Yamada H. and Ueda T. (1999). Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophys. Chem. 82: 23–28

    Article  Google Scholar 

  12. Nakagaki T., Yamada H. and Ueda T. (2000). Interaction between cell shape and contraction pattern in the Physarum plasmodium. Biophys. Chem. 84: 195–204

    Article  Google Scholar 

  13. Nakamura S., Yoshimoto Y. and Kamiya N. (1982). Oscillation in surface pH of the Physarum plasmodium. Proc. Jpn. Acad. 58: 270–273

    Google Scholar 

  14. Ortoleva P. and Ross J. (1973). Phase waves in oscillatory chemical reactions. J. Chem. Phys. 58: 5673–5680

    Article  Google Scholar 

  15. Ortoleva P. and Ross J. (1974). On a variety of wave phenomena in chemical-reactions. J. Chem. Phys. 60: 5090–5107

    Article  Google Scholar 

  16. Ortoleva P. (1976). Local phase and renormalized frequency in inhomogeneous chemioscillations.    J. Chem. Phys. 64: 1395–1406

    Article  Google Scholar 

  17. Polezhaev A.A. (1995). Phase waves in oscillatory media. Physica D 84: 253–259

    Article  Google Scholar 

  18. Schnackenberg J. (1979). Simple chemical-reaction systems with limit cycle behavior. J. Theor. Biol. 81: 389–400

    Article  Google Scholar 

  19. Tero, A., Kobayashi, R., Nakagaki, T., Physica, D.: A coupled-oscillator model with a conservation law for the rhythmic amreboid movements of plasmodial slime moulds, vol. 205, 125–135 (2005)

  20. Ueda, T.: Intracellular oscillations and pattern formation in the cell behavior of Physarum. In: Rensing, L., (ed.) Oscillations and morphogenesis. 167-181, Marcel-Dekker, New York (1993)

    Google Scholar 

  21. Ueda T., Matsumoto K., Akitaya T. and Kobatake Y. (1986). Spatial and temporal organization of intracellular adenosine nucleotide and cyclic nucleotides in relation to rhythmic motility in Physarum polycephalum. Exp. Cell Res. 162: 486–494

    Article  Google Scholar 

  22. Yamada H., Nakagaki T. and Ito M. (1999). Pattern formation of a reaction-diffusion system with self-consistent flow in the amoeboid organism Physarum plasmodium. Phys. Rev. E 59: 1009–1014

    Article  Google Scholar 

  23. Yoshimoto Y., Matsumura F. and Kamiya N. (1981). Simultaneous oscillations of Ca2+ efflux and tension generation in the permealized plasmodial strand of Physarum. Cell Motility 1: 433–443

    Article  Google Scholar 

  24. Yoshimoto Y., Sakai T. and Kamiya N. (1981). ATP oscillation in Physarum plasmodium. Protoplasm 109: 159–168

    Article  Google Scholar 

  25. Yoshimoto Y., Sakai T. and Kamiya N. (1984). ATP- and calcium-controlled contraction in a saponin model of Physarum polycephalum. Cell Struct. Funct. 9: 135–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nakagaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, H., Nakagaki, T., Baker, R.E. et al. Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold. J. Math. Biol. 54, 745–760 (2007). https://doi.org/10.1007/s00285-006-0067-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0067-1

Keywords

Navigation