Skip to main content
Log in

Comparative Analyses of the Symbiotic Associations of the Host Paramecium bursaria with Free-Living and Native Symbiotic Species of Chlorella

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Each symbiotic Chlorella variabilis associated with the ciliate Paramecium bursaria is enclosed in a symbiosome called the perialgal vacuole. Various potential symbionts, such as bacteria, yeasts, other algae, and free-living Chlorella spp., can infect P. bursaria. However, the detailed infection process of each of them in algae-free P. bursaria is unknown. Here, we aimed to elucidate the difference of the infection process between the free-living C. sorokiniana strain NIES-2169 and native symbiotic C. variabilis strain 1N. We investigated the fate of ingested algae using algae-free P. bursaria exposed separately to three types of algal inocula: NIES-2169 only, 1N only, or a mixture of NIES-2169 and 1N. We found that (1) only one algal species, preferably the native one, was retained in host cells, indicating a type of host compatibility and (2) the algal localization style beneath the host cell cortex varied between different Chlorella spp. showing various levels of host compatibilities, which was prospectively attributable to the difference in the formation of the perialgal vacuole membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Upon reasonable request, the datasets used in the current study are available from the corresponding author.

References

  1. Leung TLF, Poulin R (2008) Parasitism, commensalism, and mutualism: exploring the many shades of symbioses. Vie et Milieu. pp 107–115. https://hal.sorbonne-universite.fr/hal-03246057

  2. Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261. https://doi.org/10.1128/MMBR.05014-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Goetsch W (1924) Die Symbiose der Süsswasser-Hydroiden und ihre künstliche Beeinflussung. Z Morphol Ökol Tiere 1:660

    Article  Google Scholar 

  4. Lee JJ, Soldo AT, Reisser W, Lee M, Jeon KW, Görtz H-D (1985) The extent of algal and bacterial endosymbioses in protozoa. J Protozool 32:391–403. https://doi.org/10.1111/j.1550-7408.1985.tb04034.x

    Article  CAS  Google Scholar 

  5. Pröschold T, Darienko T, Silva PC, Reisser W, Krienitz L (2011) The systematics of “Zoochlorella” revisited employing an integrative approach. Environ Microbiol 13:350–364. https://doi.org/10.1111/j.1462-2920.2010.02333.x

    Article  PubMed  CAS  Google Scholar 

  6. Kodama Y, Fujishima M (2009) Localization of perialgal vacuoles beneath the host cell surface is not a prerequisite phenomenon for protection from the host’s lysosomal fusion in the ciliate Parameium bursaria. Protist 160:319–329. https://doi.org/10.1016/j.protis.2008.06.001

    Article  PubMed  Google Scholar 

  7. Kodama Y, Fujishima M (2005) Symbiotic Chlorella sp. of the ciliate Paramecium bursaria do not prevent acidification and lysosomal fusion of host digestive vacuole during infection. Protoplasma 225:191–203. https://doi.org/10.1007/s00709-005-0087-5

    Article  PubMed  Google Scholar 

  8. Kodama Y, Fujishima M (2010) Secondary symbiosis between Paramecium and Chlorella cells. Int Rev Cell Mol Biol 279:33–77. https://doi.org/10.1016/S1937-6448(10)79002-X

    Article  PubMed  CAS  Google Scholar 

  9. Kodama Y, Fujishima M (2009) Timing of perialgal vacuole membrane differentiation from digestive vacuole membrane in infection of symbiotic algae Chlorella vulgaris of the ciliate Paramecium bursaria. Protist 160:65–74. https://doi.org/10.1016/j.protis.2008.06.001

    Article  PubMed  Google Scholar 

  10. Kodama Y, Fujishima M (2011) Four important cytological events needed to establish endosymbiosis of symbiotic Chlorella sp. to the algae-free Paramecium bursaria. Jpn J Protozool 44:1–20

    Google Scholar 

  11. Kodama Y, Fujishima M (2012) Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria. Protist 163:658–670. https://doi.org/10.1016/j.protis.2011.10.004

    Article  PubMed  CAS  Google Scholar 

  12. Fujishima M, Kodama Y (2022) Mechanisms for establishing primary and secondary endosymbiosis in Paramecium. J Euk Microbiol. https://doi.org/10.1111/jeu.12901

    Article  PubMed  Google Scholar 

  13. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon G, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosynthesis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955. https://doi.org/10.1105/tpc.110.076406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cheng YH, Liu CFJ, Yu YH, Jhou YT, Fujishima M, Tsai I, Leu JY (2020) Genome plasticity in Paramecium bursaria revealed by population genomics. BMC Biol 18:180. https://doi.org/10.1186/s12915-020-00912-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Kodama Y, Fujishima M (2007) Infectivity of Chlorella species for the ciliate Paramecium bursaria is not based on sugar residues of their cell wall components, but based on their ability to localize beneath the host cell membrane after escaping from the host digestive vacuole in the early infection process. Protoplasma 231:55–63. https://doi.org/10.1007/s00709-006-0241-8

    Article  PubMed  CAS  Google Scholar 

  16. Kodama Y, Fujishima M (2016) Differences in infectivity between endosymbiotic Chlorella variabilis cultivated outside host Paramecium bursaria for 50 years and those immediately isolated from host cells after one year of reendosymbiosis. Biol Open 5(1):55–61. https://doi.org/10.1242/bio.013946

    Article  CAS  Google Scholar 

  17. Bomford R (1965) Infection of algae-free Paramecium bursaria with strains of Chlorella, Scenedesmus, and a yeast. J Protozool 12:221–224. https://doi.org/10.1111/j.1550-7408.1965.tb01840.x

    Article  PubMed  CAS  Google Scholar 

  18. Görtz H-D (1982) Infection of Paramecium bursaria with bacteria and yeasts. J Cell Sci 58:445–453. https://doi.org/10.1242/jcs.58.1.445

    Article  PubMed  Google Scholar 

  19. Suzaki T, Omura G, Görtz H-D (2003) Infection of symbiont-free Paramecium bursaria with yeasts. Jpn J Protozool 36:17–18 (in Japanese)

    Google Scholar 

  20. Tsukii Y, Harumoto T, Yazaki K (1995) Evidence for viral macronuclear endosymbiont in Paramecium caudatum. J Euk Microbiol 42:109–115. https://doi.org/10.1111/j.1550-7408.1995.tb01550.x

    Article  Google Scholar 

  21. Dryl S (1959) Antigensic transformation in Paramecium aurelia after homologous antiserum treatment during autogamy and conjugation. J Protozool 6:25

    Google Scholar 

  22. Fujishima M, Nagahara K, Kojima Y (1990) Changes in morphology, buoyant density and protein composition in differentiation from the reproductive short form to the infectious long form of Holospora obtusa, a macronucleus-specific symbiont of the ciliate Paramecium caudatum. Zool Sci 7(5):849–860. https://doi.org/10.34425/zs000785

    Article  CAS  Google Scholar 

  23. Agarkova I, Dunigan D, Gurnon J, Greiner T, Barres J, Thiel G, Van Etten JL (2008) Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes. J Virol 82:12181–12190. https://doi.org/10.1128/JVI.01687-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Iwai S, Fujita K, Takanishi Y, Fukushi K (2019) Photosynthetic endosymbionts benefit from host’s phagotrophy, including predation on potential competitors. Curr Biol 29:3114.e3–3119.e3. https://doi.org/10.1016/j.cub.2019.07.074

    Article  CAS  Google Scholar 

  25. Kodama Y, Fujishima M (2011) Endosymbiosis of Chlorella species to the ciliate Paramecium bursaria alters the distribution of the host’s trichocysts beneath the host cell cortex. Protoplasma 248:325–337. https://doi.org/10.1007/s00709-010-0175-z

    Article  PubMed  Google Scholar 

  26. Kodama Y, Fujishima M (2022) Endosymbiotic Chlorella variabilis reduces mitochondrial number in the ciliate Paramecium bursaria. Sci Rep 12:8216. https://doi.org/10.1038/s41598-022-12496-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comp Graph Stat 5:299–314

    Google Scholar 

  28. Summerer M, Sonntag B, Sommaruga R (2007) An experimental test of the symbiosis specificity between the ciliate Paramecium bursaria and strains of the unicellular green alga Chlorella. Environ Microbiol 9(8):2117–2122. https://doi.org/10.1111/j.1462-2920.2007.01322.x

    Article  PubMed  CAS  Google Scholar 

  29. Nishijima A, Fujishima M (2007) Chlorella vulgaris and C. sorokiniana cannot be maintained in Paramecium bursaria cell. Jpn J Protozool 40(1):28–29 (in Japanese)

    Google Scholar 

  30. Weis DS, Ayala A (1979) Effect of exposure period and algal concentrations on the frequency of infection of aposymbiotic ciliates by symbiotic algae from Paramecium bursaria. J Protozool 26:245–248. https://doi.org/10.1111/j.1550-7408.1979.tb02772.x

    Article  Google Scholar 

  31. Weis DS (1980) Hypothesis: free maltose and algal cell surface sugars are signals in the infection of Paramecium bursaria by algae. In: Schwemmler W, Schenk HEA (eds) Endocytobiology, vol 1. Walter de Gruyter & Co, Berlin/New York, pp 105–112

    Google Scholar 

  32. Muscatine L, Karakashian SJ, Karakashian MW (1967) Soluble extracellular products of algae symbiotic with a ciliate, a sponge and a mutant hydra. Comp Biochem Physiol 20(1):1–12. https://doi.org/10.1016/0010-406X(67)90720-7

    Article  CAS  Google Scholar 

  33. Karakashian SJ (1963) Growth of Paramecium bursaria as influenced by the presence of algal symbionts. Physiol Zool 36:52–68

    Article  Google Scholar 

  34. Takeda H, Sekiguchi T, Nunokawa S, Usuki I (1998) Species-specificity of Chlorella for establishment of symbiotic association with Paramecium bursaria. Does infectivity depend upon sugar components of the cell wall? Eur J Protistol 34:133–137. https://doi.org/10.1016/S0932-4739(98)80023-0

    Article  Google Scholar 

  35. Meints RH, Pardy RL (1980) Quantitative demonstration of cell surface involvement in a plant-animal symbiosis: lectin inhibition of reassociation. J Cell Sci 43:239–251. https://doi.org/10.1242/jcs.43.1.239

    Article  PubMed  CAS  Google Scholar 

  36. Lin KL, Wang JT, Fang LS (2000) Participation of glycoproteins on zooxanthellal cell walls in the establishment of a symbiotic relationship with the sea anemone, Aiptasia pulchella. Zool Stud 39:172–178

    CAS  Google Scholar 

  37. Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006) Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol 8:1985–1993. https://doi.org/10.1111/j.1462-5822.2006.00765.x

    Article  PubMed  CAS  Google Scholar 

  38. Logan DDK, LaFlamme AC, Weis VM, Davy SK (2010) Flow-cytometric characterisation of the cell-surface glycans of symbiotic dinoflagellates (Symbiodinium spp.). J Phycol 46:525–533. https://doi.org/10.1111/j.1529-8817.2010.00819.x

    Article  CAS  Google Scholar 

  39. Biquand E, Okubo N, Aihara Y, Rolland V, Hayward DC, Hatta M, Minagawa J, Maruyama T, Takahashi S (2017) Acceptable symbiont cell size differs among cnidarian species and may limit symbiont diversity. ISME J 11:1702–1712. https://doi.org/10.1038/ismej.2017.17

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kodama Y, Sumita H (2022) The ciliate Paramecium bursaria allows budding of symbiotic Chlorella variabilis cells singly from digestive vacuole membrane into the cytoplasm during algal reinfection. Protoplasma 259:117–125. https://doi.org/10.1007/s00709-021-01645-x

    Article  PubMed  CAS  Google Scholar 

  41. Karakashian MW, Karakashian SJ (1973) Intracellular digestion and symbiosis in Paramecium bursaria. Exp Cell Res 81:111–119. https://doi.org/10.1016/0014-4827(73)90117-1

    Article  PubMed  CAS  Google Scholar 

  42. Kodama Y, Nagase M, Takahama A (2017) Symbiotic Chlorella variabilis strain, 1N, can influence the digestive process in the host Paramecium bursaria during early infection. Symbiosis 71:47–55. https://doi.org/10.1007/s13199-016-0411-1

    Article  CAS  Google Scholar 

  43. Fok AK, Lee Y, Allen RD (1982) The correlation of DV pH and size with the digestive cycle in Paramecium caudatum. J Euk Microbiol 29:409–414. https://doi.org/10.1111/j.1550-7408.1982.tb05423.x

    Article  Google Scholar 

  44. Gu FK, Chen L, Ni B, Zhang X (2002) A comparative study on the electron microscopic enzymo-cytochemistry of Paramecium bursaria from light and dark cultures. Eur J Protistol 38:267–278. https://doi.org/10.1078/0932-4739-00875

    Article  Google Scholar 

  45. Karakashian SJ, Rudzinska MA (1981) Inhibition of lysosomal fusion with symbiont containing vacuoles in Paramecium bursaria. Exp Cell Res 131:387–393. https://doi.org/10.1016/0014-4827(81)90242-1

    Article  PubMed  CAS  Google Scholar 

  46. Song C, Murata K, Suzaki T (2017) Intracellular symbiosis of algae with possible involvement of mitochondrial dynamics. Sci Rep 7:1221. https://doi.org/10.1038/s41598-017-01331-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Reisser W (1992) Endosymbiotic associations of algae with freshwater protozoa and invertebrates. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interactions explored, vol 1.1. Biopress, Bristol, pp 1–19

  48. Meier R, Lefort-Tran M, Pouphile M, Reisser W, Wiessner W (1984) Comparative freeze-fracture study of perialgal and digestive vacuoles in Paramecium bursaria. J Cell Sci 71:121–140. https://doi.org/10.1242/jcs.71.1.121

    Article  PubMed  CAS  Google Scholar 

  49. Schüßler A, Schnepf E (1992) Photosynthesis dependent acidification of perialgal vacuoles in the Paramecium bursaria/Chlorella symbiosis: visualization by monensin. Protoplasma 166:218–222. https://doi.org/10.1007/BF01322784

    Article  Google Scholar 

  50. Watanabe K, Motonaga A, Tachibana M, Shimizu T, Watarai M (2022) Francisella novicida can utilize Paramecium bursaria as its potential host. Environ Microbiol Rep 14(1):50–59. https://doi.org/10.1111/1758-2229.13029

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Emeritus Masahiro Fujishima (Yamaguchi University, Japan) for giving us the valuable monoclonal antibody against mitochondria. The authors would like to thank Editage (www.editage.com) for the English-language editing of the manuscript. The authors thank the faculty of Life and Environmental Sciences in Shimane University for financial supports in publishing this report.

Funding

This work was supported by a Grant-in-Aid for Scientific Research (C) (Grant Number 20K06768) and (B) (Grant Number 23H02529) from the Japan Society for the Promotion of Science (JSPS) and the Oshimo Foundation (Hiroshima, Japan) to YK.

Author information

Authors and Affiliations

Authors

Contributions

YK conceived and designed the experiments. YK and YE performed the experiments. YK wrote the manuscript.

Corresponding author

Correspondence to Yuuki Kodama.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2023_3590_MOESM1_ESM.tif

Supplementary file1 (TIF 4874 KB)

Figure S1. Cytoplasmic streaming in P. bursaria after mixing with NIES-2169 1 h (upper) and 48 h (lower). Micrographs were taken at 10-s intervals at each time point. One hour after mixing with NIES-2169, numerous DV membranes containing NIES-2169 had formed. These DV membranes were rapidly flowing in the cytoplasm due to host cytoplasmic streaming. The black arrow indicates a representative DV. Forty-eight hours after mixing, the vacuoles enclosing multiple NIES-2169 were not flowing by the cytoplasmic streaming, because the vacuole was localized beneath the host cell cortex. Black arrowhead and double black arrowhead show representative vacuoles. This attachment of the vacuole beneath the host cell cortex is a typical feature of PV membrane. Because the host cytoplasmic streaming was suppressed compared to 1 h after the algal mixing, not only the vacuoles enclosing NIES-2169, but also other vacuoles or crystals were barely moving (Data not shown). On the other hand, when 1N cells were ingested, the initial DV membrane flowed by the host cytoplasmic streaming, and the membrane that later encloses a single 1N cell localized beneath the host cell cortex and did not flow as shown in [7]. Ma macronucleus.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodama, Y., Endoh, Y. Comparative Analyses of the Symbiotic Associations of the Host Paramecium bursaria with Free-Living and Native Symbiotic Species of Chlorella. Curr Microbiol 81, 66 (2024). https://doi.org/10.1007/s00284-023-03590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03590-9

Navigation