Skip to main content
Log in

Characterization of Some Microorganisms from Human Stool Samples and Determination of Their Effects on CT26 Colorectal Carcinoma Cell Line

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The present study aimed to isolate and identify the potential probiotic, pathobiont, and pathogenic microorganisms in the stool samples of 12 healthy individuals and evaluate their in vitro effects on cancer formation. A total of 83 strains were isolated from the stool samples and identified using MALDI-Biotyper. Fourteen of the isolates were identified as Candida spp., three isolates were identified as Cryptococcus neoformans, 55 isolates were identified as lactic acid bacteria, and the remaining isolates belonged to different 11 bacterial genera. Important microbial properties for cancer prevention and some probiotic properties were examined. All strains maintained their viability under acidic conditions and in media containing bile salts. Of the bacterial strains, 62.5% were resistant to ampicillin, chloramphenicol, gentamicin, erythromycin, kanamycin, penicillin, streptomycin, tetracycline, and vancomycin. All yeast strains were resistant to ketoconazole and susceptible to nystatin. The susceptibility of the strains to fluconazole, voriconazole, amphotericin B, and itraconazole varied. Fifty-nine percent of the strains produced EPS and 21.7% showed proteolytic activity (PA). Of the strains, 15.7% both produced exopolysaccharides (EPS) and had PA. The antioxidant activity (AOA) varied depending on the strains. The pathobiont and pathogenic microorganisms promoted tumor formation, while potential probiotic microorganisms had a suppressive effect on tumor formation (P > 0.01). One yeast (Candida kefyr MK17) and three lactic acid bacteria strains (Lacticaseibacillus paracasei MK73, Lactiplantibacillus plantarum MK55, Limosilactobacillus mucosae MK45) have superior potential thanks to their anticarcinogenic properties as well as tolerance to gastrointestinal tract conditions. Stool samples of each individual contain various potential probiotic, pathobiont, and pathogenic microorganisms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

Code Availability

Not applicable.

References

  1. Vivarelli S, Salemi R, Candido S, Santagati FL, Stefani S, Torino F, Banna GL, Tonini G, Libra M (2019) Gut microbiota and cancer: From pathogenesis to therapy. Cancers 11:38. https://doi.org/10.3390/cancers11010038

    Article  CAS  PubMed Central  Google Scholar 

  2. Tsilimigras MCB, Fodor A, Jobin C (2017) Carcinogenesis and therapeutics: the microbiota perspective. Nat Microbiol 2:17008. https://doi.org/10.1038/nmicrobiol.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walter J, Maldonado-Gomez MX, Martinez I (2018) To engraft or not to engraft: An ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol 49:129–139. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  4. Sniffen JC, McFarland LV, Evans CT, Goldstein EJC (2018) Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0209205

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee YK, Salminen S (1995) The coming of age of probiotics. Trends Food Sci Technol 6:241–245. https://doi.org/10.1016/S0924-2244(00)89085-8

    Article  Google Scholar 

  6. Kiliç GB, Karahan AG (2010) Identification of lactic acid bacteria isolated from the fecal samples of healthy humans and patients with dyspepsia, and determination of their pH, bile, and antibiotic tolerance properties. J Mol Microbiol Biotechnol 18:220–229. https://doi.org/10.1159/000319597

    Article  CAS  PubMed  Google Scholar 

  7. Sağlam H, Karahan AG (2021) Plasmid stability of potential probiotic Lactobacillus plantarum strains in artificial gastric juice, at elevated temperature, and in the presence of novobiocin and acriflavine. Arch Microbiol 203:183–191. https://doi.org/10.1007/s00203-020-02017-4

    Article  CAS  PubMed  Google Scholar 

  8. Wheeler ML, Limon JJ, Bar AS et al (2016) Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe 19:865–873. https://doi.org/10.1016/j.chom.2016.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boranbayeva T, Karahan AG, Tulemissova Z, Myktybayeva R, Özkaya S (2020) Properties of a new probiotic candidate and Lactobacterin-TK2 against diarrhea in calves. Probiotics Antimicrob Proteins 12:918–928. https://doi.org/10.1007/s12602-020-09649-4

    Article  CAS  PubMed  Google Scholar 

  10. Araya M, Morelli L, Reid G, Sanders ME, Stanton C, Pineiro M, Ben Embarek P (2002) Guidelines for the Evaluation of Probiotics in Food. FAO/WHO Work. Gr. Rep. Draft. Guidel. Eval. Probiotics Food, Jt. https://doi.org/10.1111/j.1469-0691.2012.03873

    Book  Google Scholar 

  11. Ma F, Song Y, Sun M, Wang A, Jiang S, Mu G, Tuo Y (2021) Exopolysaccharide produced by Lactiplantibacillus plantarum-12 alleviates intestinal inflammation and colon cancer symptoms by modulating the gut microbiome and metabolites of C57BL/6 mice treated by azoxymethane/dextran sulfate sodium salt. Foods. https://doi.org/10.3390/foods10123060

    Article  PubMed  PubMed Central  Google Scholar 

  12. Angelin J, Kavitha M (2020) Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 162:853–865. https://doi.org/10.1016/J.IJBIOMAC.2020.06.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoffmann A, Kleniewska P, Pawliczak R (2021) Antioxidative activity of probiotics. Arch Med Sci 17:792–804

    Article  CAS  Google Scholar 

  14. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci 108:6252–6257. https://doi.org/10.1073/pnas.1102938108

    Article  PubMed  PubMed Central  Google Scholar 

  15. Syal P, Vohra A (2013) Probiotic potential of yeasts isolated from traditional Indian fermented foods. Int J Microbiol Res 5:390–398. https://doi.org/10.9735/0975-5276.5.2.390-398

    Article  Google Scholar 

  16. CLSI (2016) Performance standards for antimicrobial susceptibility testing. 26th Edition, CLSI supplement M100S

  17. CLSI (2009) Method for antifungal disk diffusion susceptibility testing of yeasts; Approved Guideline—Second Edition, CLSI Doc M44-A2, 29(17)

  18. Amaretti A, Di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–817. https://doi.org/10.1007/s00253-012-4241-7

    Article  CAS  PubMed  Google Scholar 

  19. Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure−activity relationship. J Agric Food Chem 50:468–472. https://doi.org/10.1021/JF010830B

    Article  CAS  PubMed  Google Scholar 

  20. Liu WM, Scott KA, Dalgleish AG (2015) Supernatants of tumours treated with chemotherapy can alter tumour growth and development in vivo. Anticancer Res 35:1499–1508

    CAS  PubMed  Google Scholar 

  21. Awaisheh SS, Obeidat MM, Al-Tamimi HJ et al (2016) In vitro cytotoxic activity of probiotic bacterial cell extracts against Caco-2 and HRT-18 colorectal cancer cells. Milchwissenshaft 69:27–31. https://doi.org/10.25968/MSI.2016.7

    Article  Google Scholar 

  22. IBM Corp (2015) IBM SPSS Statistics for Windows

  23. Wilson DA, Young S, Timm K et al (2017) Multicenter evaluation of the Bruker MALDI Biotyper CA system for the identification of clinically important bacteria and yeasts. Am J Clin Pathol 147:623–631. https://doi.org/10.1093/ajcp/aqw225

    Article  CAS  PubMed  Google Scholar 

  24. Kimura K, Nishio T, Mizoguchi C, Koizumi A (2010) Analysis of the composition of lactobacilli in humans. Biosci Microflora 29:47–50. https://doi.org/10.12938/bifidus.29.47

    Article  CAS  Google Scholar 

  25. Forbes D, Ee L, Camer-Pesci P, Ward PB (2001) Faecal candida and diarrhoea. Arch Dis Child 84:328–331. https://doi.org/10.1136/adc.84.4.328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Biasoli MS, Tosello ME, Magaró HM (2002) Adherence of Candida strains isolated from the human gastrointestinal tract. Mycoses 45:465–469. https://doi.org/10.1046/j.1439-0507.2002.00793.x

    Article  PubMed  Google Scholar 

  27. Demicco EG, Kattapuram SV, Kradin RL, Rosenberg AE (2018) Infections of joints, synovium-lined structures, and soft tissue. In: Kradin RL (ed) Diagnostic Pathology of Infectious Disease. Elsevier, pp. 377–401 https://doi.org/10.1016/B978-0-323-44585-6.00015-1

  28. Dufresne SF, Marr KA, Sydnor E et al (2014) Epidemiology of Candida kefyr in patients with hematologic malignancies. J Clin Microbiol 52:1830–1837. https://doi.org/10.1128/JCM.00131-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pettit RK, Repp KK, Hazen KC (2010) Temperature affects the susceptibility of Cryptococcus neoformans biofilms to antifungal agents. Med Mycol 48:421–426. https://doi.org/10.3109/13693780903136879

    Article  CAS  PubMed  Google Scholar 

  30. Yıldıran H, Başyiğit Kılıç G, Karahan Çakmakçı AG (2019) Characterization and comparison of yeasts from different sources for some probiotic properties and exopolysaccharide production. Food Sci Technol 39:646–653. https://doi.org/10.1590/fst.29818

    Article  Google Scholar 

  31. Znaidi S, van Wijlick L, Hernández-Cervantes A et al (2018) Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut. Cell Microbiol 20:1–21. https://doi.org/10.1111/cmi.12890

    Article  CAS  Google Scholar 

  32. Urdaneta V, Casadesús J (2017) Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front Med 4:163. https://doi.org/10.3389/fmed.2017.00163

    Article  Google Scholar 

  33. Mathur S, Singh R (2005) Antibiotic resistance in food lactic acid bacteria—a review. Int J Food Microbiol 105:281–295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  34. Abriouel H, Casado Muñoz MDC, Lavilla Lerma L et al (2015) New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res Int 78:465–481. https://doi.org/10.1016/j.foodres.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  35. Shridhar S, Dhanashree B (2019) Antibiotic susceptibility pattern and biofilm formation in clinical isolates of Enterococcus spp. Interdiscip Perspect Infect Dis 2019:7854968. https://doi.org/10.1155/2019/7854968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Z, Chen M, Yu Y, Pan S, Liu Y (2018) Antimicrobial susceptibility among gram-positive and gram-negative blood-borne pathogens collected between 2012–2016 as part of the Tigecycline Evaluation and Surveillance Trial. Antimicrob Resist Infect Control 7:152. https://doi.org/10.1186/s13756-018-0441-y

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gandhi TN, Patel MG, Jain MR (2015) Antifungal susceptibility of Candida against six antifungal drugs by disk diffusion method isolated from vulvovaginal candidiasis. Int J Cur Res Rev 7:20–25

    CAS  Google Scholar 

  38. Al-mamari A, Al-buryhi M, Al-heggami MA, Al-hag S (2014) Identify and sensitivity to antifungal drugs of Candida species causing vaginitis isolated from vulvovaginal infected patients in Sana’a city. Der Pharma Chem 6:336–342

    Google Scholar 

  39. Hazırolan G (2018) Investigation of in vitro susceptibility of non-albicans Candida species to fluconazole, itraconazole, voriconazole by reference broth microdilution method: Application of new species-specific clinical breakpoints and epidemiological cutoff values. Türk Mikrobiyol Cem Derg 48:38–44. https://doi.org/10.5222/tmcd.2018.038

    Article  Google Scholar 

  40. Alp D, Kuleaşan H (2019) Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World J Microbiol Biotechnol 35:1–9. https://doi.org/10.1007/s11274-019-2730-x

    Article  CAS  Google Scholar 

  41. Kšonžeková P, Bystrický P, Vlčková S et al (2016) Exopolysaccharides of Lactobacillus reuteri: Their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr Polym 141:10–19. https://doi.org/10.1016/j.carbpol.2015.12.037

    Article  CAS  PubMed  Google Scholar 

  42. Su LY, Shi YX, Yan MR, Xi Y, Su XL (2015) Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway. Acta Pharmacol Sin 36:1514–1519. https://doi.org/10.1038/aps.2015.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lal P, Sharma D, Pruthi P, Pruthi V (2010) Exopolysaccharide analysis of biofilm-forming Candida albicans. J Appl Microbiol 109:128–136. https://doi.org/10.1111/j.1365-2672.2009.04634.x

    Article  CAS  PubMed  Google Scholar 

  44. Akçaǧlar S, Ener B, Töre O (2011) Acid proteinase enzyme activity in Candida albicans strains: A comparison of spectrophotometry and plate methods. Turkish J Biol 35:559–567. https://doi.org/10.3906/biy-1002-39

    Article  Google Scholar 

  45. Lin M, Chang F (2000) Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci 45:1617–1622. https://doi.org/10.1023/a:1005577330695

    Article  CAS  PubMed  Google Scholar 

  46. Choi SS, Kim Y, Han KS, You S, Oh S, Kim SH (2006) Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett Appl Microbiol 42:452–458. https://doi.org/10.1111/j.1472-765X.2006.01913.x

    Article  CAS  PubMed  Google Scholar 

  47. Abegg MA, Alabarse PVG, Schüller ÁK, Benfato MS (2012) Glutathione levels in and total antioxidant capacity of Candida sp. cells exposed to oxidative stress caused by hydrogen peroxide. Rev Soc Bras Med Trop 45:620–626. https://doi.org/10.1590/s0037-86822012000500015

    Article  PubMed  Google Scholar 

  48. Ceugniez A, Tourret M, Dussert E et al (2017) Interactions between Kluyveromyces marxianus from cheese origin and the intestinal symbiont Bacteroides thetaiotaomicron: Impressive antioxidative effects. LWT-Food Sci Technol 81:281–290. https://doi.org/10.1016/j.lwt.2017.03.056

    Article  CAS  Google Scholar 

  49. Thirabunyanon M, Boonprasom P, Niamsup P (2009) Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett. https://doi.org/10.1007/s10529-008-9902-3

    Article  PubMed  Google Scholar 

  50. Motevaseli E, Shirzad M, Akrami SM, Mousavi AS, Mirsalehian A, Modarressi MH (2013) Normal and tumour cervical cells respond differently to vaginal lactobacilli, independent of pH and lactate. J Med Microbiol 62:1065–1072. https://doi.org/10.1099/jmm.0.057521-0

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Süleyman Demirel University Scientific Research Projects Coordination Unit, Isparta, Turkey [Project Number: 4436-D2-15].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aynur Gül Karahan.

Ethics declarations

Conflict of interest

Münevver Kahraman, Aynur Gül Karahan, and Mustafa Ender Poyrazoğlu declare that they have no conflict of interest.

Ethical Approval

The trials were approved by the Akdeniz University Clinical Trials Ethics Committee (Protocol Number: 70904504/99).

Consent to Participate

Aynur Gül Karahan and Münevver Kahraman contributed to the study conception and design. Material preparation, data collection, and analyses were performed by Münevver Kahraman and Aynur Gül Karahan. The first draft of the manuscript was written by Münevver Kahraman and Aynur Gül Karahan, and all the authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Consent for Publication

Written informed consent was obtained from all the volunteers who participated in the study. Informed consent was documented in a written, signed and dated informed consent form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahraman, M., Karahan, A.G. & Terzioğlu, M.E. Characterization of Some Microorganisms from Human Stool Samples and Determination of Their Effects on CT26 Colorectal Carcinoma Cell Line. Curr Microbiol 79, 225 (2022). https://doi.org/10.1007/s00284-022-02915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02915-4

Navigation