Skip to main content
Log in

Identification and Characterization of a Novel Soluble Pyridine Nucleotide Transhydrogenase from Streptomyces avermitilis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Soluble pyridine nucleotide transhydrogenase (STH) transfers hydride between NADH and NADPH to maintain redox balance. In the present study, the sth gene from Gram-positive bacterium Streptomyces avermitilis (SaSTH) was expressed in Escherichia coli, and the recombinant STH protein was purified to homogeneity. Activity assays indicated that SaSTH was able to catalyze transhydrogenase reactions by using NADH or NADPH as reductants and thio-NAD+ as an oxidant. The apparent Km value for NADPH (74.5 μM) was lower than that for NADH (104.0 μM) and the apparent kcat/Km for NADPH (2704.7 mM−1 s−1) was higher than that for NADH (1129.8 mM−1 s−1). SaSTH showed optimal activity at 25 °C and at a pH of 6.2. Heat-inactivation studies revealed that SaSTH remained stable below 55 °C and that approximately 50% activity was preserved at 57 °C for 20 min. Analyses also showed that SaSTH activity was inhibited by divalent ions, particularly Co2+, Ni2+, and Zn2+. In addition, the transhydrogenase activity of SaSTH was inhibited by ATP and strongly stimulated by ADP and AMP. In summary, we characterized a recombinant enzyme exhibiting STH activity from Gram-positive bacteria for the first time. Our findings provide new options for cofactor engineering and industrial biocatalytic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Liu J, Li H, Zhao G, Caiyin Q, Qiao J (2018) Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. J Ind Microbiol Biotechnol 45(5):313–327. https://doi.org/10.1007/s10295-018-2031-7

    Article  CAS  PubMed  Google Scholar 

  2. Lee HC, Kim JS, Jang W, Kim SY (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149(1–2):24–32. https://doi.org/10.1016/j.jbiotec.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  3. Argyrou A, Blanchard JS (2004) Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol 78:89–142. https://doi.org/10.1016/S0079-6603(04)78003-4

    Article  CAS  PubMed  Google Scholar 

  4. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279(8):6613–6619. https://doi.org/10.1074/jbc.M311657200

    Article  CAS  PubMed  Google Scholar 

  5. Boonstra B, Björklund L, French CE, Wainwright I, Bruce NC (2000) Cloning of the sth gene from Azotobacter vinelandii and construction of chimeric soluble pyridine nucleotide transhydrogenases. FEMS Microbiol Lett 191(1):87–93. https://doi.org/10.1111/j.1574-6968.2000.tb09323.x

    Article  CAS  PubMed  Google Scholar 

  6. Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204(2):247–252. https://doi.org/10.1111/j.1574-6968.2001.tb10892.x

    Article  CAS  PubMed  Google Scholar 

  7. Cao Z, Song P, Xu Q, Su R, Zhu G (2011) Overexpression and biochemical characterization of soluble pyridine nucleotide transhydrogenase from Escherichia coli. FEMS Microbiol Lett 320(1):9–14. https://doi.org/10.1111/j.1574-6968.2011.02287.x

    Article  CAS  PubMed  Google Scholar 

  8. Zhu GP, Golding GB, Dean AM (2005) The selective cause of an ancient adaptation. Science 307(5713):1279–1282. https://doi.org/10.1126/science.1106974

    Article  CAS  PubMed  Google Scholar 

  9. Decorosi F, Lori L, Santopolo L, Tatti E, Giovannetti L, Viti C (2011) Characterization of a Cr(VI)-sensitive Pseudomonas corrugata 28 mutant impaired in a pyridine nucleotide transhydrogenase gene. Res Microbiol 162(8):747–755. https://doi.org/10.1016/j.resmic.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  10. Spaans SK, Weusthuis RA, van der Oost J, Kengen SWM (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:742. https://doi.org/10.3389/fmicb.2015.00742

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haverkorn van Rijsewijk BR, Kochanowski K, Heinemann M, Sauer U (2016) Distinct transcriptional regulation of the two Escherichia coli transhydrogenases PntAB and UdhA. Microbiology 162(9):1672–1679. https://doi.org/10.1099/mic.0.000346

    Article  CAS  PubMed  Google Scholar 

  12. Nikel PI, Pérez-Pantoja D, de Lorenzo V (2016) Pyridine nucleotide transhydrogenases enable redox balance of Pseudomonas putida during biodegradation of aromatic compounds. Environ Microbiol 18(10):3565–3582. https://doi.org/10.1111/1462-2920.13434

    Article  CAS  PubMed  Google Scholar 

  13. Boonstra B, Rathbone DA, French CE, Walker EH, Bruce NC (2000) Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl Environ Microbiol 66(12):5161–5166. https://doi.org/10.1128/AEM.66.12.5161-5166.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X (2016) High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Microb Cell Fact 15(1):141. https://doi.org/10.1186/s12934-016-0536-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Olajuyin AM, Yang M, Mu T, Tian J, Thygesen A, Adesanoye OA, Adaramoye OA, Song A, Xing J (2018) Enhanced production of succinic acid from methanol-organosolv pretreated Strophanthus preussii by recombinant Escherichia coli. Bioprocess Biosyst Eng 41(10):1497–1508. https://doi.org/10.1007/s00449-018-1977-1

    Article  CAS  PubMed  Google Scholar 

  16. Fu J, Wang Z, Chen T, Liu W, Shi T, Wang G, Tang Y, Zhao X (2014) NADH plays the vital role for chiral pure D-(-)-2, 3-butanediol production in Bacillus subtilis under limited oxygen conditions. Biotechnol Bioeng 111(10):2126–2131. https://doi.org/10.1002/bit.25265

    Article  CAS  PubMed  Google Scholar 

  17. Fu J, Huo G, Feng L, Mao Y, Wang Z, Ma H, Chen T, Zhao X (2016) Metabolic engineering of Bacillus subtilis for chiral pure meso-2, 3-butanediol production. Biotechnol Biofuels 9:90. https://doi.org/10.1186/s13068-016-0502-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nitschel R, Ankenbauer A, Welsch I, Wirth NT, Massner C, Ahmad N, McColm S, Borges F, Fotheringham I, Takors R, Blombach B (2020) Engineering Pseudomonas putida KT2440 for the production of isobutanol. Eng Life Sci 20(5–6):148–159. https://doi.org/10.1002/elsc.201900151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sánchez AM, Andrews J, Hussein I, Bennett GN, San KY (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly (3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22(2):420–425. https://doi.org/10.1021/bp050375u

    Article  CAS  PubMed  Google Scholar 

  20. Jan J, Martinez I, Wang Y, Bennett GN, San KY (2013) Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli. Biotechnol Prog 29(5):1124–1130. https://doi.org/10.1002/btpr.1765

    Article  CAS  PubMed  Google Scholar 

  21. Cai D, He P, Lu X, Zhu C, Zhu J, Zhan Y, Wang Q, Wen Z, Chen S (2017) A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02. Sci Rep 7:43404. https://doi.org/10.1038/srep43404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ichinose H, Kamiya N, Goto M (2005) Enzymatic redox cofactor regeneration in organic media: functionalization and application of glycerol dehydrogenase and soluble transhydrogenase in reverse micelles. Biotechnol Prog 21(4):1192–1197. https://doi.org/10.1021/bp0500765

    Article  CAS  PubMed  Google Scholar 

  23. Mouri T, Shimizu T, Kamiya N, Goto M, Ichinose H (2009) Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase. Biotechnol Prog 25(5):1372–1378. https://doi.org/10.1002/btpr.231

    Article  CAS  PubMed  Google Scholar 

  24. Luo ZW, Kim WJ, Lee SY (2018) Metabolic engineering of Escherichia coli for efficient production of 2-pyrone-4,6-dicarboxylic acid from glucose. ACS Synth Biol 7(9):2296–2307. https://doi.org/10.1021/acssynbio.8b00281

    Article  CAS  PubMed  Google Scholar 

  25. Yang Z, Zhang Z (2018) Production of (2R, 3R)-2, 3-butanediol using engineered Pichia pastoris: strain construction, characterization and fermentation. Biotechnol Biofuels 11:35. https://doi.org/10.1186/s13068-018-1031-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wermuth B, Kaplan NO (1976) Pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa: purification by affinity chromatography and physicochemical properties. Arch Biochem Biophys 176(1):136–143. https://doi.org/10.1016/0003-9861(76)90149-1

    Article  CAS  PubMed  Google Scholar 

  27. Vandenbroek HW, Veeger C (1971) Pyridine-nucleotide transhydrogenase. 5. Kinetic studies on transhydrogenase from Azotobacter vinelandii. Eur J Biochem 24(1):72–82. https://doi.org/10.1111/j.1432-1033.1971.tb19656.x

    Article  CAS  Google Scholar 

  28. Cohen PT, Kaplan NO (1970) Kinetic characteristics of the pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa. J Biol Chem 245(18):4666–4672. https://doi.org/10.1016/S0021-9258(18)62846-7

    Article  CAS  PubMed  Google Scholar 

  29. Chung AE (1970) Pyridine nucleotide transhydrogenase from Azotobacter vinelandii. J Bacteriol. https://doi.org/10.1128/JB.102.2.438-447.1970

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cohen PT, Kaplan NO (1970) Purification and properties of the pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa. J Biol Chem 245(11):2825–2836. https://doi.org/10.1016/S0021-9258(18)63064-9

    Article  CAS  PubMed  Google Scholar 

  31. Widmer F, Kaplan NO (1977) Pseudomonas aeruginosa transhydrogenase: affinity of substrates for the regulatory site and possible hysteretic behavior. Biochem Biophys Res Commun 76(4):1287–1292. https://doi.org/10.1016/0006-291X(77)90995-0

    Article  CAS  PubMed  Google Scholar 

  32. Widmer F, Kaplan NO (1976) Regulatory properties of the pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa. Active enzyme ultracentrifugation studies. Biochemistry 15(21):4699–4703. https://doi.org/10.1021/bi00666a025

    Article  CAS  PubMed  Google Scholar 

  33. Collins PA, Knowles CJ (1977) Transhydrogenase activity in the marine bacterium Beneckea natriegens. Biochim Biophys Acta 480(1):77–82. https://doi.org/10.1016/0005-2744(77)90322-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Reference: 32071270), The Major Science and Technology Projects in Anhui Province (Reference: 202003a06020009), and Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources.

Author information

Authors and Affiliations

Authors

Contributions

ZC, JL, and RM performed the experiments. ZC and GZ designed the project. ZC and JL analyzed the data. ZC, JL, PW, and GZ wrote the manuscript. All authors reviewed the manuscript and approved the final version for publication.

Corresponding authors

Correspondence to Peng Wang or Guoping Zhu.

Ethics declarations

Conflict of interest

None of the authors have any conflicting interests to declare.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Liu, J., Meng, R. et al. Identification and Characterization of a Novel Soluble Pyridine Nucleotide Transhydrogenase from Streptomyces avermitilis. Curr Microbiol 79, 32 (2022). https://doi.org/10.1007/s00284-021-02727-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02727-y

Navigation