Skip to main content
Log in

Sphingomonas xanthus sp. nov., Isolated from Beach Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A light yellow-colored, Gram-stain-negative, aerobic, oxidase- and catalase-positive, flagellated bacterium with motility, designated as strain AE3T was isolated from soil. Cells of strain AE3T are rod-shaped, and the colonies are round and convex. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain AE3T forms a lineage within the genus Sphingomonas of the family Sphingomonadaceae and is most closely related to Sphingomonas edaphi KCTC 62107 T (98.6%), Sphingomonas oryziterrae KCTC 22476 T (97.9%), and Sphingomonas jaspsi DSM 18422 T (97.4%). The growth of the strain AE3T was observed under 18–42 °C (optimum, 37 °C), pH 6.0–9.0 (optimum, pH 6.5–7.0), and in the absence of NaCl. Strain AE3T contains Q-10 as a predominant respiratory quinone, and the major fatty acids are C17:1 ω6c, summed feature 8 (C18:1 ω7c), and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The major polar lipids are sphingoglycolipids, unidentified phospholipids, and phosphatidylethanolamine. The DNA G + C content of strain AE3T is 63.6 mol%. The nearly complete genome of strain AE3T consists of 2.2 Mbp, (2,168 total protein-coding genes, 45 tRNAs, 4 ncRNAs, and 3 rRNAs). Genomic taxonomy analysis demonstrates that the novel strain has < 75.9% average nucleotide identity value, and also shows < 24.9% in silico DNA–DNA hybridization value compared to related taxa, which clearly separates strain AE3T from other species of the genus Sphingomonas with values below the thresholds for species delineation. Based on phenotypic, genotypic, and phylogenetic analyses, strain AE3T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas xanthus sp. nov. is proposed. The type strain of Sphingomonas xanthus is AE3T (= KCTC 620106 T = JCM 32376 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

Abbreviations

RAST:

Rapid Annotation using Subsystem Technology

ANI:

Average nucleotide identity

DDH:

DNA–DNA hybridization

GGDC:

Genome-to-Genome Distance Calculator

SGL:

Sphingoglycolipid

PL:

Phospholipid

PE:

Phosphatidylethanolamine

GPL:

Glycerophospholipids

GL:

Glycolipids

NJ:

Neighbor-joining

MP:

Maximum-parsimony

ML:

Maximum-likelihood

ME:

Minimum-evolution

References

  1. Yabuuchi E, Kosako Y (2015) Sphingomonas. In: Rainey FA, Whitman WB, Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P (eds) Bergey’s manual of systematics of archaea and bacteria. Wiley, New Jersey, pp 1–39

    Google Scholar 

  2. Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51(Pt 4):1405–1417. https://doi.org/10.1099/00207713-51-4-1405

    Article  CAS  PubMed  Google Scholar 

  3. Takeuchi M, Sawada H, Oyaizu H, Yokota A (1994) Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria. Int J Syst Bacteriol 44(2):308–314. https://doi.org/10.1099/00207713-44-2-308

    Article  CAS  PubMed  Google Scholar 

  4. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A, Kämpfer P (2003) Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. Nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53(5):1253–1260. https://doi.org/10.1099/ijs.0.02461-0

    Article  CAS  PubMed  Google Scholar 

  5. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T, Yamamoto H (1990) Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34(2):99–119. https://doi.org/10.1111/j.1348-0421.1990.tb00996.x

    Article  CAS  PubMed  Google Scholar 

  6. Huang HD, Wang W, Ma T, Li GQ, Liang FL, Liu RL (2009) Sphingomonas sanxanigenens sp. nov., isolated from soil. Int J Syst Evol Microbiol 59(4):719–723. https://doi.org/10.1099/ijs.0.000257-0

    Article  CAS  PubMed  Google Scholar 

  7. Tao XQ, Lu GN, Dang Z, Yang C, Yi XY (2007) A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem 42(3):401–408

    Article  CAS  Google Scholar 

  8. Kim H, Chhetri G, Seo T (2019) Sphingomonas edaphi sp. nov., a novel species isolated from beach soil in the Republic of Korea. Int J Syst Evol Microbiol 70(1):522–529. https://doi.org/10.1099/ijsem.0.003780

    Article  CAS  Google Scholar 

  9. Chung EJ, Jo EJ, Yoon HS, Song GC, Jeon CO, Chung YR (2011) Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 61(10):2389–2394

    Article  PubMed  Google Scholar 

  10. Sakai K, Yamanaka H, Moriyoshi K, Ohmoto T, Ohe T (2007) Biodegradation of bisphenol A and related compounds by Sphingomonas sp. strain BP-7 isolated from seawater. Biosci Biotechnol Biochem 71(1):51–57. https://doi.org/10.1271/bbb.60351

    Article  CAS  PubMed  Google Scholar 

  11. Gm C, Jo JH, Kang MS, Kim MS, Lee SY, Im WT (2017) Sphingomonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 67(4):845–850

    Article  Google Scholar 

  12. Chen J, Wong MH, Wong YS, Tam NF (2008) Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Mar Pollut Bull 57(6–12):695–702

    Article  CAS  PubMed  Google Scholar 

  13. Wang YP, Gu J-D (2006) Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology 15(6):549–557

    Article  PubMed  Google Scholar 

  14. Decker CF, Hawkins RE, Simon GL (1992) Infections with Pseudomonas paucimobilis. Clin Infect Dis 14(3):783–784. https://doi.org/10.1093/clinids/14.3.783

    Article  CAS  PubMed  Google Scholar 

  15. Calubiran OV, Schoch PE, Cunha BA (1990) Pseudomonas paucimobilis bacteraemia associated with haemodialysis. J Hosp Infect 15(4):383–388

    Article  CAS  PubMed  Google Scholar 

  16. White DC, Sutton SD, Ringelberg DB (1996) The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol 7(3):301–306. https://doi.org/10.1016/s0958-1669(96)80034-6

    Article  CAS  PubMed  Google Scholar 

  17. Chhetri G, Kim J, Kim I, Seo T (2019) Lysobacter caseinilyticus, sp. nov., a casein hydrolyzing bacterium isolated from sea water. Antonie Van Leeuwenhoek 112(9):1349–1356. https://doi.org/10.1007/s10482-019-01267-7

    Article  CAS  PubMed  Google Scholar 

  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chhetri G, Yang D, Choi J, Kim H, Seo T (2019) Flavobacterium edaphi sp. nov., isolated from soil from Jeju Island. Korea. Arch Microbiol 201(4):539–545. https://doi.org/10.1007/s00203-018-1593-0

    Article  CAS  PubMed  Google Scholar 

  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28(14):1823–1829. https://doi.org/10.1093/bioinformatics/bts252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  23. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9(5):945–945. https://doi.org/10.1093/oxfordjournals.molbev.a040771

    Article  CAS  Google Scholar 

  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    Article  CAS  PubMed  Google Scholar 

  25. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  26. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  27. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20(4):406–416

    Article  Google Scholar 

  28. Islam MR, Sultana T, Joe MM, Cho JC, Sa T (2012) Comparisons of direct extraction methods of microbial DNA from different paddy soils. Saudi J Biol Sci 19(3):337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87. https://doi.org/10.1093/nar/gkz310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9(1):75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206-214. https://doi.org/10.1093/nar/gkt1226

    Article  CAS  PubMed  Google Scholar 

  32. Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110(10):1281–1286

    Article  CAS  PubMed  Google Scholar 

  33. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bernardet JF, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52(3):1049–1070

    CAS  PubMed  Google Scholar 

  35. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44(4):992–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powers EM (1995) Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61(10):3756–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jang JH, Lee D, Seo T (2018) Lysobacter pedocola sp nov, a novel species isolated from Korean soil. J Microbiol 56(6):387–392. https://doi.org/10.1007/s12275-018-8046-y

    Article  CAS  PubMed  Google Scholar 

  38. Breznak JA, Costilow RN (2007) Physicochemical Factors in Growth. In: Reddy CA, Beveridge TZ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology. ASM Press, Washington, USA, pp 309–329

    Google Scholar 

  39. Kuykendall L, Roy M, O’Neill J, Devine T (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 38(4):358–361

    CAS  Google Scholar 

  40. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42(6):457–469

    Article  CAS  Google Scholar 

  41. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45(2):316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nahaie MR, Goodfellow M, Minnikin DE, Hajek V (1984) Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J Gen Microbiol 130(9):2427–2437. https://doi.org/10.1099/00221287-130-9-2427

    Article  CAS  PubMed  Google Scholar 

  43. Komagata K, Suzuki K-I (1988) 4 Lipid and cell-wall analysis in bacterial systematics. In: Colwell RR, Grigorova R (eds) Methods in microbiology, 19th edn. Elsevier, Amsterdam, pp 161–207

    Google Scholar 

  44. Minnikin D, O’Donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2(5):233–241

    Article  CAS  Google Scholar 

  45. Luo Y-R, Tian Y, Huang X, Kwon K, Yang S-H, Seo H-S, Kim S-J, Zheng T-L (2012) Sphingomonas polyaromaticivorans sp nov, a polycyclic aromatic hydrocarbon-degrading bacterium from an oil port water sample. Int J Syst Evol Microbiol 62(6):1223–1227

    Article  CAS  PubMed  Google Scholar 

  46. Glaeser SP, Kämpfer P (2014) The Family Sphingomonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 641–707

    Chapter  Google Scholar 

  47. Ryan MP, Adley CC (2010) Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J Hosp Infect 75(3):153–157. https://doi.org/10.1016/j.jhin.2010.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bernhard Schink (University of Konstanz, Konstanz, Germany) for the suggested genus and species names. This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202002203), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1F1A1072647).

Author information

Authors and Affiliations

Authors

Contributions

HK isolated the bacterium, designed the study, performed the phenotypic and biochemical characterization, and wrote the original draft; GC helped with the analysis of taxonomic data; TS designed and supervised the study, and edited the original draft.

Corresponding author

Correspondence to Taegun Seo.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 3984 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Chhetri, G. & Seo, T. Sphingomonas xanthus sp. nov., Isolated from Beach Soil. Curr Microbiol 78, 403–410 (2021). https://doi.org/10.1007/s00284-020-02273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02273-z

Navigation