Skip to main content
Log in

The Draft Genome Sequence of Clostridium butyricum QXYZ514, a Potent Bacterium for Converting Glycerol into Fuels and Bioproducts in the Waste-Based Biorefinery

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

An anaerobic bacterium Clostridium buturicum QXYZ514 was isolated from a pond soil sample located neighboring to a biodiesel factory. This bacterium possesses excellent metabolic features for converting biodiesel-derived glycerol into various bioproducts, including 1,3-propanediol, butyrate, lactate, and acetate, and fuels, like ethanol and butanol. To further improve the yield of the target products and minimize the production of the by-products, the whole genome sequence of this multipurpose strain might provide necessary genetic information, and hence, the complete genome of QXYZ514 strain was sequenced using the PacBio RS II sequencing method. According to the complete genome sequence, the genome of QXYZ514 consisted of two circular chromosomes with a total of 4,636,461 bp, where GC content was found to be 28.76%. Major predicted features of the genome included a total of 4220 coding sequences (CDS), 87 tRNAs genes, and 36 rRNAs genes, which were annotated with the help of different databases for a better understanding of this strain. Six possible CRISPR components were also predicted in the genome. The exploration of the complete genome sequence of the QXYZ514 strain would have the potential to enrich the diversity of this species, and to recognize some significant hydrolytic enzymes, which could provide the references for overcoming the bottlenecks in the biorefinery usage of this bacterium in the valorization of biodiesel-derived glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anitha M, Kamarudin SK, Kofli NT (2016) The potential of glycerol as a value-added commodity. Chem Eng J 295:119–130. https://doi.org/10.1016/J.CEJ.2016.03.012

    Article  CAS  Google Scholar 

  2. AndreeBen B, Lange AB, Robenek H, Dteinbuchel A (2010) Conversion of glycerol to ply(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76:622–626. https://doi.org/10.1128/AEM.02097-09

    Article  CAS  Google Scholar 

  3. Tan HW, Aziz ARA, Aroua MK (2013) Glycerol production and its applications as a raw material: a review. Renew Sustain Energy Rev 27:118–127. https://doi.org/10.1016/j.rser.2013.06.035

    Article  CAS  Google Scholar 

  4. Yang M, Yun J, Zhang H et al (2018) Genetically engineered strains: application and advances for 1,3-propanediol production from glycerol. Food Technol Biotechnol 56:3–15. https://doi.org/10.17113/ftb.56.01.18.5444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zabed HM, Akter S, Yun J et al (2020) Biogas from microalgae: technologies, challenges and opportunities. Renew Sustain Energy Rev 117:109503. https://doi.org/10.1016/j.rser.2019.109503

    Article  CAS  Google Scholar 

  6. Qi X, Yun J, Qi Y et al (2016) Expression and characterization of a novel 1,3-propanediol dehydrogenase from Lactobacillus brevis. Appl Biochem Biotechnol 179:959–972. https://doi.org/10.1007/s12010-016-2043-6

    Article  PubMed  CAS  Google Scholar 

  7. Zabed HM, Akter S, Yun J et al (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew Sustain Energy Rev 105:105–128. https://doi.org/10.1016/j.rser.2019.01.048

    Article  CAS  Google Scholar 

  8. Zhang G, Zabed HM, Yun J et al (2020) Two-stage biosynthesis of d-tagatose from milk whey powder by an engineered Escherichia coli strain expressing l-arabinose isomerase from Lactobacillus plantarum. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123010

    Article  PubMed  Google Scholar 

  9. Yun J, Yang M, Magocha TA et al (2018) Production of 1,3-propanediol using a novel 1,3-propanediol dehydrogenase from isolated Clostridium butyricum and co-biotransformation of whole cells. Bioresour Technol 247:838–843. https://doi.org/10.1016/j.biortech.2017.09.180

    Article  PubMed  CAS  Google Scholar 

  10. Abbad-andaloussi S, Manginot-durr C, Amine J, Petitdemange E (1995) Isolation and characterization of Clostridium butyricum DSM 5431 mutants with increased resistance to 1,3-propanediol and altered production of acids. Appl Environ Microbiol 61:4413–4417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu C, Fang B, Wang S (2016) Effects of culture conditions on the kinetic behavior of 1, 3-propanediol fermentation by Clostridium butyricum with a kinetic model. Bioresour Technol 212:130–137. https://doi.org/10.1016/j.biortech.2016.04.028

    Article  PubMed  CAS  Google Scholar 

  12. Wydau-Dematteis S, Louis M, Zahr N et al (2015) The functional dlt operon of Clostridium butyricum controls the d-alanylation of cell wall components and influences cell septation and vancomycin-induced lysis. Anaerobe 35:105–114. https://doi.org/10.1016/j.anaerobe.2015.09.001

    Article  PubMed  CAS  Google Scholar 

  13. Cassir N, Benamar S, La Scola B (2016) Clostridium butyricum: from beneficial to a new emerging pathogen. Clin Microbiol Infect 22:37–45. https://doi.org/10.1016/j.cmi.2015.10.014

    Article  PubMed  Google Scholar 

  14. Yang M, An Y, Zabed HM et al (2019) Random mutagenesis of Clostridium butyricum strain and optimization of biosynthesis process for enhanced production of 1,3-propanediol. Bioresour Technol 284:188–196. https://doi.org/10.1016/j.biortech.2019.03.098

    Article  PubMed  CAS  Google Scholar 

  15. Li C, Wang Y, Xie G et al (2016) Complete genome sequence of Clostridium butyricum JKY6D1 isolated from the pit mud of a Chinese flavor liquor-making factory. J Biotechnol 220:23–24. https://doi.org/10.1016/j.jbiotec.2016.01.003

    Article  PubMed  CAS  Google Scholar 

  16. Roberts RJ, Carneiro MO, Schatz MC (2013) The advantages of SMRT sequencing. Genome Biol 14:6–9. https://doi.org/10.1186/gb-2013-14-6-405

    Article  Google Scholar 

  17. Chaisson MJ, Tesler G (2012) Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. https://doi.org/10.1186/1471-2105-13-238

    Article  Google Scholar 

  18. Miller JR, Delcher AL, Koren S et al (2008) Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 24:2818–2824. https://doi.org/10.1093/bioinformatics/btn548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lowe TM, Eddy SR (1996) TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. https://doi.org/10.1093/nar/25.5.0955

    Article  Google Scholar 

  20. Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform 8:1–10. https://doi.org/10.1186/1471-2105-8-172

    Article  CAS  Google Scholar 

  22. Cai G, Jin B, Saint C, Monis P (2010) Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: effect of pH and glucose concentrations. Int J Hydrogen Energy 35:6681–6690. https://doi.org/10.1016/j.ijhydene.2010.04.097

    Article  CAS  Google Scholar 

  23. Qi X, Guo Q, Wei Y et al (2012) Enhancement of pH stability and activity of glycerol dehydratase from Klebsiella pneumoniae by rational design. Biotechnol Lett 34:339–346. https://doi.org/10.1007/s10529-011-0775-5

    Article  PubMed  CAS  Google Scholar 

  24. Qi X, Deng W, Wang F et al (2013) Molecular cloning, co-expression, and characterization of glycerol dehydratase and 1,3-propanediol dehydrogenase from Citrobacter freundii. Mol Biotechnol 54:469–474. https://doi.org/10.1007/s12033-012-9585-9

    Article  PubMed  CAS  Google Scholar 

  25. Roberts RJ, Vincze T, Posfai J, Macelis D (2015) REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43:D298–D299. https://doi.org/10.1093/nar/gku1046

    Article  PubMed  CAS  Google Scholar 

  26. Krzywinski M et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. https://doi.org/10.1101/gr.092759.109.19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31972042, 31950410550, 31571806) and the High-level project of Jiangsu Six Talent Peaks of China (Grant No. SWYY-018).

Author information

Authors and Affiliations

Authors

Contributions

MY: conceptualization, investigation, formal analysis, and writing original draft. HMZ: conceptualization, original draft reviewing and editing. JY: figure illustration and validation. GZ: resources, software. XQ: conceptualization, reviewing and editing, supervision.

Corresponding author

Correspondence to Xianghui Qi.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical Approval

This work was done in the compliance with the ethical standards of the Jiangsu University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zabed, H.M., Yun, J. et al. The Draft Genome Sequence of Clostridium butyricum QXYZ514, a Potent Bacterium for Converting Glycerol into Fuels and Bioproducts in the Waste-Based Biorefinery. Curr Microbiol 77, 3371–3376 (2020). https://doi.org/10.1007/s00284-020-02182-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02182-1

Navigation