Skip to main content

Advertisement

Log in

Putative Drug Target Identification in Tinea Causing Pathogen Trichophyton rubrum Using Subtractive Proteomics Approach

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Trichophyton, important among the three keratinophylic fungi grouped as dermatophytes, is known to cause superficial infections in skin, nail and hair of all the living organisms. The side effects produced by the drugs currently administered to counter these infections have necessitated the search for novel targets. The present study focused on finding putative drug targets in Trichophyton rubrum using the subtractive proteomics approach where its whole proteome was analyzed to find proteins non-homologous to humans inclusive of their gut flora and human protein domain but essential to T. rubrum, to identify sub-cellular localization, functional classification of uncharacterized proteins and to analyze the protein network, druggability and pathway of the targets. The study’s strength relies on its addition of important steps namely, non-homology of the pathogen domain to human domain, non-homology to gut microbiota and substantiation of the importance of the targets in networking by node deletion to the existing methods in drug discovery for dermatophytoses. The study has resulted in the identification of two novel drug targets from the whole proteome of T. rubrum that are not present in human and human gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Moriarty B, Hay R, Morris-Jones R (2012) The diagnosis and management of tinea. Br Med J 345(7865):37–42. https://doi.org/10.1136/bmj.e4380

    Article  Google Scholar 

  2. Jain A, Jain S, Rawat S (2010) Emerging fungal infections among children: a review on its clinical manifestations, diagnosis, and prevention. J Pharm Bioallied Sci 2(4):314–320. https://doi.org/10.4103/0975-7406.72131

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blutfield MS, Lohre JM, Pawich DA, Vlahovic TC (2015) The immunologic response to Trichophyton rubrum in lower extremity fungal infections. J Fungi 1:130–137. https://doi.org/10.3390/jof1020130

    Article  Google Scholar 

  4. Martinez-Rossi NM, Peres NTA, Rossi A (2008) Antifungal resistance mechanisms in dermatophytes. Mycopathologia 166:369–383. https://doi.org/10.1007/s11046-008-9110-7

    Article  PubMed  Google Scholar 

  5. Dixon DM, Walsh TJ (1996) Chapter 76. In: Medical microbiology. Antifungal agents, 4th edn. University of Texas Medical Branch at Galveston

  6. Haung Y, Niu B, Gao Y et al (2010) CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. https://doi.org/10.1093/bioinformatics/btq003

    Article  CAS  Google Scholar 

  7. Hasan MA, Rahman MA, Noore MS et al (2014) Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: an in silico approach. Comput Biol Chem 52:66–72. https://doi.org/10.1016/j.compbiolchem.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  8. Hossain MU, Khan MA, Hashem A et al (2016) Finding potential therapeutic targets against Shigella flexneri through proteome exploration. Front Microbiol 7:1–13. https://doi.org/10.3389/fmicb.2016.01817

    Article  Google Scholar 

  9. Zhang R, Ou HY, Zhang CT (2004) DEG: a database of essential genes. Nucleic Acids Res 32:D271–D272. https://doi.org/10.1093/nar/gkh024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Amineni U, Pradhan D, Marisetty H (2010) In silico identification of common putative drug targets in Leptospira interrogans. J Chem Biol 3(4):165–173. https://doi.org/10.1007/s12154-010-0039-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shanmugham B, Pan A (2013) Identification and characterization of potential therapeutic candidates in emerging human pathogen Mycobacterium abscessus: a novel hierarchical in silico approach. PLoS ONE 8(3):1–17. https://doi.org/10.1371/journal.pone.0059126

    Article  CAS  Google Scholar 

  12. Finn RD, Coggil P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285. https://doi.org/10.1093/nar/gkv1344

    Article  CAS  PubMed  Google Scholar 

  13. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864. https://doi.org/10.1073/pnas.95.11.5857

    Article  CAS  PubMed  Google Scholar 

  14. Cai CZ, Han LY, Ji ZL et al (2003) SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 31:3692–3697. https://doi.org/10.1093/nar/gkg600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McDowall J, Hunter S (2011) InterPro protein classification. Methods Mol Biol 694:37–47. https://doi.org/10.1007/978-1-60761-977-2_3

    Article  CAS  PubMed  Google Scholar 

  16. Bhasin M, Raghava GPS (2004) ESLpred: SVM based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST. Nucleic Acids Res 32:W414–W419. https://doi.org/10.1093/nar/gkh350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins: structure, function and bioinformatics. Proteins 64(3):643–651. https://doi.org/10.1002/prot.21018

    Article  CAS  PubMed  Google Scholar 

  18. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins globally integrated and scored. Nucleic Acids Res 39:D561–D568. https://doi.org/10.1093/nar/gkq973

    Article  CAS  PubMed  Google Scholar 

  19. Sabetian S, Shamsir MS (2015) Identification of putative drug targets for human sperm–egg interaction defect using protein network approach. BMC Syst Biol 9:1–11. https://doi.org/10.1186/s12918-015-0186-7

    Article  CAS  Google Scholar 

  20. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303. https://doi.org/10.1007/978-1-60761-987-1_18

    Article  CAS  PubMed  Google Scholar 

  21. Kushwaha SK, Shakya M (2010) Protein interaction network analysis—approach for potential drug target identification in Mycobacterium tuberculosis. J Theor Biol 262:284–294. https://doi.org/10.1016/j.jtbi.2009.09.029

    Article  CAS  PubMed  Google Scholar 

  22. Knox C, Law V, Jewison T et al (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041. https://doi.org/10.1093/nar/gkq1126

    Article  CAS  PubMed  Google Scholar 

  23. Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30:412–415. https://doi.org/10.1093/nar/30.1.412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du J, Li M, Yuan Z et al (2016) A decision analysis model for KEGG pathway analysis. BMC Bioinform 17:1–12. https://doi.org/10.1186/s12859-016-1285-1

    Article  Google Scholar 

  25. Haag NL, Velk KK, Wu C (2012) In silico identification of drug targets in methicillin/multidrug-resistant Staphylococcus aureus. Int J Adv Life Sci 4:21–32

    PubMed  PubMed Central  Google Scholar 

  26. Anishetty S, Pulimi P, Pennathur G (2005) Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem 29:368–378. https://doi.org/10.1016/j.compbiolchem.2005.07.001

    Article  CAS  PubMed  Google Scholar 

  27. Sarkar M, Maganti L, Ghoshal N, Dutta C (2012) In silico quest for putative drug targets in Helicobacter pylori HPAG1: molecular modeling of candidate enzymes from lipopolysaccharide biosynthesis pathway. J Mol Model 18:1855–1866. https://doi.org/10.1007/s00894-011-1204-3

    Article  CAS  PubMed  Google Scholar 

  28. Rowland I, Gibson G, Heinken A et al (2017) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836. https://doi.org/10.1042/BCJ20160510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar G, Mudgal R, Srinivasan N, Sandhya S (2018) Use of designed sequences in protein structure recognition. Biol Direct 13(8):1–13. https://doi.org/10.1186/s13062-018-0209-6

    Article  CAS  Google Scholar 

  31. Hema K, Priyadarshini V, Pradhan D et al (2015) Identification of putative drug targets and vaccine candidates for pathogens causing atherosclerosis. Biochem Anal Biochem 4(2):1–9. https://doi.org/10.4172/2161-1009.1000175

    Article  CAS  Google Scholar 

  32. Birhanu BT, Jin-Lee S, Park N et al (2018) In silico analysis of putative drug and vaccine targets of the metabolic pathways of Actinobacillus pleuropneumoniae using a subtractive/comparative genomics approach. J Vet Sci 19(2):188–199. https://doi.org/10.4142/jvs.2018.19.2.188

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rao SV, Srinivas K, Sujini GN, Kumar GNS (2014) Protein–protein interaction detection: methods and analysis. Int J Proteomics 2014:1–12. https://doi.org/10.1155/2014/147648

    Article  CAS  Google Scholar 

  34. Barabasi A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113. https://doi.org/10.1038/nrg1272

    Article  CAS  PubMed  Google Scholar 

  35. Yu H, Kim PM, Sprecher E et al (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3(4):e59. https://doi.org/10.1371/journal.pcbi.0030059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sabidussi G (1966) The centrality index of a graph. Psychometrika 31(4):581–603. https://doi.org/10.1007/BF02289527

    Article  CAS  PubMed  Google Scholar 

  37. Crowther GJ, Shanmugam D, Carmona SJ et al (2010) Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis 4(8):1–18. https://doi.org/10.1371/journal.pntd.0000804

    Article  CAS  Google Scholar 

  38. Cai CZ, Wang WL, Sun LZ, Chen YZ (2003) Protein function classification via support vector machine. Math Biosci 185(2):111–122. https://doi.org/10.1016/S0025-5564(03)00096-8

    Article  CAS  PubMed  Google Scholar 

  39. Klamt S, Stelling J (2003) Two approaches for metabolic pathway analysis? Trends Biotechnol 21(2):64–69. https://doi.org/10.1016/s0167-7799(02)00034-3

    Article  CAS  PubMed  Google Scholar 

  40. Loomis WF, Shaulsky G, Wang N (1997) Histidine kinases in signal transduction pathways of eukaryotes. Cell Sci 110(10):1141–1145

    CAS  Google Scholar 

  41. Romero PA, Herscovics A (1989) Glycoprotein biosynthesis in Saccharomyces cerevisiae. Characterization of alpha-1,6-mannosyltransferase which initiates outer chain formation. J Biol Chem 264(4):1946–1950

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DST-PURSE for financial assistance to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

MJ: Planned and guided the work, SAMH: Executed and written all the works, TJ and SV: Contributed in data analysis and written portions.

Corresponding author

Correspondence to Muthusamy Jeyam.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuthakir, M.H.S., Jebastin, T., Sharmila, V. et al. Putative Drug Target Identification in Tinea Causing Pathogen Trichophyton rubrum Using Subtractive Proteomics Approach. Curr Microbiol 77, 2953–2962 (2020). https://doi.org/10.1007/s00284-020-02114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02114-z

Navigation