Skip to main content

Advertisement

Log in

First Report of Environmental Isolation of Exophiala spp. in Malaysia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The opportunistic pathogen Exophiala dermatitidis has been frequently isolated from tropical regions of the world. However, there is no report of environmental isolation of Exophiala spp. from Malaysia. The information regarding the ecology of this microbe is important for a better understanding of the opportunism. This study aims to conduct a survey of natural distribution of Exophiala spp. in Malaysia. Forty-seven strains of Exophiala-like was isolated by using selective media. These isolates from the fields were molecularly identified based on the ITS region. The biochemical activity of these microbes was tested by conducting various tests, i.e. DNase test, proteinase activity, and urea hydrolysis. Overall, 22 strains of E. dermatitidis were successfully obtained and identified from burnt tree bark, oil dripped soil sample, hot spring biofilm, railway track stones, tar road contaminated with petrol hydrocarbon, drain and deep mud of Sungai Pinang besides the new discovery from pigeon droppings. A single strain of E. heteromorpha was identified from tar road contaminated with petrol hydrocarbon. Genotypes of the isolated E. dermatitidis were identified by the neighbor-joining tree and grouped into Genotype A, A2 and B. The existence of new Genotype A4 was confirmed by a similar cladogram position in both neighbor-joining and maximum likelihood tree. The survival of E. dermatitidis in the hydrocarbon contaminated environment was studied by supplying engine oil and observing the growth pattern. The results of this study suggest that the opportunistic Exophiala spp. was isolated from nutrient limited and harsh conditions in the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Hiruma M, Kawada A, Ohata H, Ohnishi Y, Takahashi H, Yamazaki M et al (1993) Systemic phaeohyphomycosis caused by Exophiala dermatitidis. Mycoses 36(1–2):1–7. https://doi.org/10.1111/j.1439-0507.1993.tb00679.x

    Article  PubMed  CAS  Google Scholar 

  2. Matsumoto T, Matsuda T, McGinnis MR, Ajello L (1993) Clinical and mycological spectra of Wangiella dermatitidis infections. Mycoses 36:145–155. https://doi.org/10.1111/j.1439-0507.1993.tb00743.x

    Article  PubMed  CAS  Google Scholar 

  3. Chang CL, Kim DS, Park DJ, Kim HJ, Lee CH, Shin JH (2000) Acute cerebral phaeohyphomycosis due to Wangiella dermatitidis accompanied by cerebrospinal fluid eosinophilia. J Clin Microbiol 38:1965–1966

    Article  CAS  Google Scholar 

  4. Woollons A, Darley CR, Pandian S, Arnstein P, Blackee J, Paul J (1996) Phaeohyphomycosis caused by Exophiala dermatitidis following intra-articular steroid injection. Brit J Dermatol 135:475–477. https://doi.org/10.1046/j.1365-2133.1996.d01-1026.x

    Article  CAS  Google Scholar 

  5. Engemann J, Kaye K, Cox G, Perfect J, Schell W, McGarry SA et al (2003) Exophiala infection from contaminated injectable steroids prepared by a compounding pharmacy-United States, July-November 2002 (Reprinted from MMWR, vol 51, pg 1109–1112, 2002). JAMA 289:291–293

    Article  Google Scholar 

  6. Maeda H, Shibuya H, Yamaguchi Y, Miyoshi T, Irie M, Sato T (2008) Feline digital phaeohyphomycosis due to Exophiala jeanselmei. J Vet Med Sci 70:1395–1397. https://doi.org/10.1292/jvms.70.1395

    Article  PubMed  Google Scholar 

  7. Nyaoke A, Weber ES, Innis C, Stremme D, Dowd C, Hinckley L et al (2009) Disseminated phaeohyphomycosis in weedy seadragons (Phyllopteryx taeniolatus) and leafy seadragons (Phycodurus eques) caused by species of Exophiala, including a novel species. J Vet Diagn Invest 21:69–79. https://doi.org/10.1177/104063870902100111

    Article  PubMed  Google Scholar 

  8. De Hoog GS, Vicente VA, Najafzadeh MJ, Harrak MJ, Badali H, Seyedmousavi S (2011) Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia 27:46. https://doi.org/10.3767/003158511X614258

    Article  PubMed  PubMed Central  Google Scholar 

  9. Orélis-Ribeiro R, Vicente VA, Ostrensky A, Chammas MA, Boeger WA (2017) Is marine dispersion of the lethargic crab disease possible? Assessing the tolerance of Exophiala cancerae to a broad combination of salinities, temperatures, and exposure times. Mycopathologia 182:997–1004. https://doi.org/10.1007/s11046-017-0169-x

    Article  PubMed  Google Scholar 

  10. Sudhadham M, Prakitsin S, Sivichai S, Chaiyarat R, Dorrestein GM, Menken SBJ et al (2008) The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest. Stud Mycol 61:145–155. https://doi.org/10.3114/sim.2008.61.15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Matos T, De Hoog GS, De Boer AG, De Crom I, Haase G (2002) High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses 45:373–377. https://doi.org/10.1046/j.1439-0507.2002.00779.x

    Article  PubMed  CAS  Google Scholar 

  12. Satow MM, Attili-Angelis D, De Hoog GS, Angelis DF, Vicente VA (2008) Selective factors involved in oil flotation isolation of black yeasts from the environment. Stud Mycol 61:157–163. https://doi.org/10.3114/sim.2008.61.16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Vicente VA, Attili-Angelis D, Pie MR, Queiroz-Telles F, Cruz LM, Najafzadeh MJ et al (2008) Environmental isolation of black yeast-like fungi involved in human infection. Stud Mycol 61:137–144. https://doi.org/10.3114/sim.2008.61.14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nascimento MM, Vicente VA, Bittencourt JV, Gelinski JML, Prenafeta-Boldú FX, Romero-Güiza M et al (2017) Diversity of opportunistic black fungi on babassu coconut shells, a rich source of esters and hydrocarbons. Fungal Biol 121:488–500. https://doi.org/10.1016/j.funbio.2017.01.006

    Article  PubMed  CAS  Google Scholar 

  15. Yazdanparast SA, Mohseni S, De Hoog GS, Aslani N, Sadeh A, Badali H (2017) Consistent high prevalence of Exophiala dermatitidis, a neurotropic opportunist, on railway sleepers. Med Mycol 27:180–187. https://doi.org/10.1016/j.mycmed.2017.01.007

    Article  CAS  Google Scholar 

  16. Dogen A, Ilkit M, De Hoog GS (2013) Black yeast habitat choices and species spectrum on high altitude creosote-treated railway ties. Fungal Biol 117:692–696. https://doi.org/10.1016/j.funbio.2013.07.006

    Article  PubMed  CAS  Google Scholar 

  17. Isola D, Selbmann L, De Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX et al (2013) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. https://doi.org/10.1007/s11046-013-9635-2

    Article  PubMed  Google Scholar 

  18. Yew SM, Chan CL, Lee KW, Na SL, Tan R, Hoh CC et al (2014) A five-year survey of dematiaceous fungi in a tropical hospital reveals potential opportunistic species. PLoS ONE 9:e104352. https://doi.org/10.1371/journal.pone.0104352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chakrabarti A, Jatana M, Kumar P, Chatha L, Kaushal A, Padhye AA (1997) Isolation of Cryptococcus neoformans var. gattii from Eucalyptus camaldulensis in India. J Clin Microbiol 35:3340–3342

    Article  CAS  Google Scholar 

  20. Jayaram M, Nagao H (2018) Potato dextrose agar with rose-bengal and chloramphenicol: a new culture medium to isolate pathogenic Exophiala dermatitidis from the environment. Klimik Dergisi 31:11–15. https://doi.org/10.5152/kd.2018.05

    Article  Google Scholar 

  21. Kirchhoff L, Olsowski M, Rath PM, Steinmann J (2019) Exophiala dermatitidis: key issues of an opportunistic fungal pathogen. Virulence 10:984–998. https://doi.org/10.1080/21505594.2019.1596504

    Article  PubMed  CAS  Google Scholar 

  22. Staerck C, Vandeputte P, Gastebois A, Calenda A, Giraud S, Papon N et al (2018) Enzymatic mechanisms involved in evasion of fungi to the oxidative stress: focus on Scedosporium apiospermum. Mycopathologia 183:227–239. https://doi.org/10.1007/s11046-017-0160-6

    Article  PubMed  CAS  Google Scholar 

  23. Porteous NB, Grooters AM, Redding SW, Thompson EH, Rinaldi MG, De Hoog GS et al (2003) Identification of Exophiala mesophila isolated from treated dental unit waterlines. J Clin Microbiol 41:3885–3889. https://doi.org/10.1128/JCM.41.8.3885-3889.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Nishimura K, Miyaji M (1982) Studies on a saprophyte of Exophiala dermatitidis isolated from a humidifier. Mycopathologia 77:173–181. https://doi.org/10.1007/BF00518803

    Article  PubMed  CAS  Google Scholar 

  25. Virtudazo EV, Nakamura H, Kakishima M (2001) Phylogenetic analysis of sugarcane rusts based on sequences of ITS, 5.8 S rDNA and D1/D2 regions of LSU rDNA. J Gen Plant Pathol 67:28–36. https://doi.org/10.1007/PL00012983

    Article  CAS  Google Scholar 

  26. Suyama Y, Kawamuro K, Kinoshita I, Yoshimura K, Tsumura Y, Takahara H (1996) DNA sequence from a fossil pollen of Abies spp. from Pleistocene peat. Genes Genet Syst 71:145–149. https://doi.org/10.1266/ggs.71.145

    Article  PubMed  CAS  Google Scholar 

  27. White TJ, Bruns T, Lee SJWT, Taylor JL (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 18:315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1

    Article  Google Scholar 

  28. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhyzae and rust. Mol Ecol 2:113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

    Article  PubMed  CAS  Google Scholar 

  29. Gumral R, Tümgör A, Saraçlı MA, Yıldıran ŞT, Ilkit M, De Hoog GS (2014) Black yeast diversity on creosoted railway sleepers changes with ambient climatic conditions. Microbial Ecol 68:699–707. https://doi.org/10.1007/s00248-014-0459-5

    Article  Google Scholar 

  30. Zalar P, Novak M, De Hoog GS, Gunde-Cimerman N (2011) Dishwashers—a man-made ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol 115:997–1007. https://doi.org/10.1016/j.funbio.2011.04.007

    Article  PubMed  CAS  Google Scholar 

  31. Zupancic J, Babič MN, Zalar P, Gunde-Cimerman N (2016) The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens. PLoS ONE 11:e0148166. https://doi.org/10.1371/journal.pone.0148166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sav H, Ozakkas F, Altınbas R, Kiraz N, Tümgör A, Gümral R et al (2016) Virulence markers of opportunistic black yeast in Exophiala. Mycoses 59:343–350. https://doi.org/10.1111/myc.12478

    Article  PubMed  CAS  Google Scholar 

  33. Chakrabarti A, Nayak N, Talwar P (1991) In vitro proteinase production by Candida species. Mycopathologia 114:163–168. https://doi.org/10.1007/BF00437209

    Article  PubMed  CAS  Google Scholar 

  34. Ruma-Haynes P, Brownlee AG, Sorrell TC (2000) A rapid method for detecting extracellular proteinase activity in Cryptococcus neoformans and a survey of 63 isolates. J Med Microbiol 49:733–737. https://doi.org/10.1099/0022-1317-49-8-733

    Article  PubMed  CAS  Google Scholar 

  35. Zhao J, Zeng J, De Hoog GS, Attili-Angelis D, Prenafeta-Boldú FX (2010) Isolation and identification of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microb Ecol 60:149–156. https://doi.org/10.1007/s00248-010-9651-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sterflinger K, Pinar G (2013) Microbial deterioration of cultural heritage and works of art—tilting at windmills? Appl Microbiol Biotechnol 97:9637–9646. https://doi.org/10.1007/s00253-013-5283-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Uijthof JMJ, Van Belkum A, De Hoog GS, Haase G (1998) Exophiala dermatitidis and Sarcinomyces phaeomuriformis: ITS1-sequencing and nutritional physiology. Med Mycol 36:143–151

    PubMed  CAS  Google Scholar 

  38. Suh MK, Lee HC, Kim DM, Ha GY, Choi JS (2012) Molecular phylogenetics of exophiala species isolated from Korea. Ann Dermatol 24:287–294. https://doi.org/10.5021/ad.2012.24.3.287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Matos T, Haase G, Gerrits van den Ende A, De Hoog GS (2003) Molecular diversity of oligotrophic and neurotropic members of the black yeast genus Exophiala, with accent on E. dermatitidis. Antonie Van Leeuwenhoek 83:293–303. https://doi.org/10.1023/A:1023373329502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Nina Siragusa and Dr. Khayriyyah Mohd Hanafiah for their valuable comments and English correction. This research was financially supported by Universiti Sains Malaysia Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Dr Hideyuki Nagao supervised the project and reviewed the manuscript. Mehalene planned and performed the experiments, analysed the results and wrote the manuscript.

Corresponding author

Correspondence to Mehalene Jayaram.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaram, M., Nagao, H. First Report of Environmental Isolation of Exophiala spp. in Malaysia. Curr Microbiol 77, 2915–2924 (2020). https://doi.org/10.1007/s00284-020-02109-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02109-w

Navigation