Skip to main content

Advertisement

Log in

High Level of Resistance to Antimicrobials and Heavy Metals in Multidrug-Resistant Pseudomonas sp. Isolated from Water Sources

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antimicrobial-resistant bacteria (ARB) carrying antimicrobial resistance genes (ARGs) have been increasingly detected in water sources. Pseudomonas sp. are opportunistic pathogens commonly reported in water samples and different antimicrobial resistance mechanisms have been described in Pseudomonas sp., producing multidrug-resistant (MDR) phenotype. Besides, the presence of heavy metal resistance genes (HMRGs) may select ARB, which is worrying. Therefore, this study aimed to characterize the genotypes of Pseudomonas sp. isolated from different water sources. Water samples (i.e., rivers, streams, lakes and sewage treatment plants) were collected from different cities in Brazil. The bacterial identification was performed by sequencing the 16S rDNA and the resistance profile to antimicrobials and heavy metals were determined by minimum inhibitory concentration (MIC). Several ARGs, HMRGs, and plasmids were researched by PCR and the amplicons were sequenced for confirmation. A total of 23 Pseudomonas sp. isolates were obtained and identified as Pseudomonas saponiphila, Pseudomonas hunanensis, Pseudomonas aeruginosa, and Pseudomonas asiatica. These isolates presented high MICs to antimicrobials and heavy metals, being the great majority (n = 21; 91%) classified as MDR. Different clinically important ARGs were detected, such as blaGES, qnrS, qepA, tetB, aac(3′)-IIa, and ant(2″)-Ia. The czcA gene was the only HMRG detected and no plasmids were found. To the best of our knowledge, this is the first report of the world of P. saponiphila carrying ARGs (i.e., blaGES, qnrS, aac(3′)-IIa, tetB) and QepA-producing P. hunanensis and the first time of P. saponiphila, P. asiatica, and P. hunanensis in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kumar R, Padhye LP (2017) Fate of environmental pollutants. Water Environ Res 89:1603–1633. https://doi.org/10.2175/106143017X15023776270601

    Article  PubMed  CAS  Google Scholar 

  2. Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimald A, Dickenson E, Sultherland J, Salveson A, Eduards MA, Pruden A (2019) Impact of lending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic. Water Res 151:75–86. https://doi.org/10.1016/j.watres.2018.12.003

    Article  PubMed  CAS  Google Scholar 

  3. Reddy B, Dubey SK (2019) River ganges water as reservoir of microbes with antibiotic and metal ion resistence genes: high throughput metagenomics approach. Environ Pollut 246:443–451. https://doi.org/10.1016/j.envpol.2018.12.022

    Article  PubMed  CAS  Google Scholar 

  4. Fuentefria DB, Ferreira AE, Corção G (2011) Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: are they genetically related? J Environ Manag 92:250–255. https://doi.org/10.1016/j.jenvman.2010.09.001

    Article  CAS  Google Scholar 

  5. Bird K, Boopathy R, Nathaniel R, LaFleur G (2019) Water pollution and observation of acquired antibiotic resistence in Bayou Lafouche, a major drinking water source in Southeast Louisiana, USA. Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-018-4008-5

    Article  PubMed  Google Scholar 

  6. Hao CS, You SL, Chang GP, Chen J, Liang YH, Guang GY (2018) Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ 616:453–461. https://doi.org/10.1016/j.scitotenv.2017.10.318

    Article  CAS  Google Scholar 

  7. Monbini S, Rezatofighi SE, Kiyani L, Motamedi H (2019) Diversity and metallo- β-lactamase-producing genes in Pseudomonas aeruginosa strains isolated from filters of household water treatment systems. J Environ Manag 231:413–418. https://doi.org/10.1016/j.jenvman.2018.10.068

    Article  CAS  Google Scholar 

  8. Deredjian A, Colinon C, Brothier E, Favre-Bonté S, Cournoyer B, Nazaret S (2011) Antibiotic and metal resistance among hospital and outdoor strains of Pseudomonas aeruginosa. Res Microbiol 162:689–700. https://doi.org/10.1016/j.resmic.2011.06.007

    Article  PubMed  CAS  Google Scholar 

  9. Weisburg WG, Barns SM, Pelletier BA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. CLSI (2018) Performance standards for antimicrobial susceptibility testing: twenty-eighth informational supplement. CLSI document M100-S28. Clinical and Laboratory Standards Institute, Wayne, PA

  12. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  13. Noppe-Leclercq I, Wallet F, Haentjens S, Courcol R, Simonet M (1999) PCR detection of aminoglycoside resistance genes: a rapid molecular typing method for Acinetobacter baumannii. Res Microbiol 150:317–322

    Article  CAS  PubMed  Google Scholar 

  14. Keyes K, Hudson C, Maurer JJ, Thayer S, White DG, Lee MD (2000) Detection of florfenicol resistance genes in Escherichia coli isolated from sick chickens. Antimicrob Agents Chemother 44:421–424. https://doi.org/10.1128/aac.44.2.421-424.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ng LK, Martin I, Alfa M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 15:209–215

    Article  CAS  PubMed  Google Scholar 

  16. Kerrn MB, Klemmensen T, Frimodt-Mǿller N, Espersen F (2002) Susceptibility of Danish Escherichia coli strains isolated from urinary tract infections and bacteraemia, and distribution of sul genes conferring sulphonamide resistance. J Antimicrob Chemother 50:513–516. https://doi.org/10.1093/jac/dkf164

    Article  PubMed  CAS  Google Scholar 

  17. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P (2007) Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 60:394–397. https://doi.org/10.1093/jac/dkm204

    Article  PubMed  CAS  Google Scholar 

  18. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65:490–495. https://doi.org/10.1093/jac/dkp498

    Article  PubMed  CAS  Google Scholar 

  19. Bouskill NJ, Barnhart EP, Galloway TS, Handy RD, Ford TE (2007) Quantification of changing Pseudomonas aeruginosa sodA, htpX and mt gene abundance in response to trace metal toxicity: a potential in situ biomarker of environmental health. FEMS Microbiol Ecol 60:276–286. https://doi.org/10.1111/j.1574-6941.2007.00296.x

    Article  PubMed  CAS  Google Scholar 

  20. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCRbased replicon typing. J Microbiol Methods 63:219–228. https://doi.org/10.1016/j.mimet.2005.03.018

    Article  PubMed  CAS  Google Scholar 

  21. García-Fernández A, Fortini D, Veldman K, Mevius D, Carattoli A (2009) Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. J Antimicrob Chemother 63:274–281. https://doi.org/10.1093/jac/dkn470

    Article  PubMed  CAS  Google Scholar 

  22. Gao J, Li BY, Wang HH, Liu ZQ (2014) Pseudomonas hunanensis sp. nov., isolated from soil subjected to long-term manganese pollution. Curr Microbiol 69:19–24. https://doi.org/10.1007/s00284-014-0545-4

    Article  PubMed  CAS  Google Scholar 

  23. Lang E, Burghartz M, Spring S, Swiderski J, Spröer C (2018) Pseudomonas benzenivorans sp. nov. and Pseudomonas saponiphila sp. nov., represented by xenobiotics degrading type strains. Curr Microbiol 60:85–91. https://doi.org/10.1007/s00284-009-9507-7

    Article  CAS  Google Scholar 

  24. Tohya M, Watanabe S, Teramoto K, Uechi K, Tada T, Kuwahara-Arai K, Kinjo T, Maeda S, Nakasone I, Zaw NN, Mya S, Zan KN, Tin HH, Fujita J, Kirikae T (2019) Pseudomonas asiatica sp. nov., isolated from hospitalized patients in Japan and Myanmar. Int J Syst Evol Microbiol 69:1361–1368. https://doi.org/10.1099/ijsem.0.003316

    Article  PubMed  CAS  Google Scholar 

  25. Tohya M, Tada T, Watanabe S, Kuwahara-Arai K, Zin KN, Zaw NN, Aung MY, Mya S, Zan KN, Kirikae T, Tin HH (2019) Emergence of carbapenem-resistant Pseudomonas asiatica producing NDM-1 and VIM-2 Metallo-β-lactamases in Myanmar. Antimicrob Agents Chemother 63:e00475–e519. https://doi.org/10.1128/AAC.00475-19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gellatly SL, Hancock RE (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173. https://doi.org/10.1111/2049-632X.12033

    Article  PubMed  CAS  Google Scholar 

  27. Bush K, Jacoby GA (2010) Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 54:969–976. https://doi.org/10.1128/AAC.01009-09

    Article  PubMed  CAS  Google Scholar 

  28. Poirel L, Thomas IL, Naas T, Karim A, Nordmann P (2000) Biochemical sequence analyses of GES-1, a novel class A extended-spectrum betalactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob Agents Chemother 44:622–632. https://doi.org/10.1128/aac.44.3.622-632.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Poirel L, Weldhagen GF, Naas T, De Champs C, Dove MG, Nordmann P (2001) GES-2, a class A betalactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother 45:2598–2603. https://doi.org/10.1128/aac.45.9.2598-2603.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ory J, Bricheux G, Robin F, Togola A, Forestier C, Traore O (2019) Biofilms in hospital effluents as a potential crossroads for carbapenemase-ecoding strains. Sci Total Environ 657:7–15. https://doi.org/10.1016/j.scitotenv.2018.11.427

    Article  PubMed  CAS  Google Scholar 

  31. Polotto M, Casella T, de Lucca Oliveira MG, Rúbio FG, Nogueira ML, de Almeida MT, Nogueira MC (2012) Detection of P. aeruginosa harboring blaCTX-M-2, blaGES-1 and blaGES-5, blaIMP-1 and blaSPM-1 causing infections in Brazilian tertiary-care hospital. BMC Infect Dis 12:176. https://doi.org/10.1186/1471-2334-12-176

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nodari CS, Siebert M, Matte UDS, Barth AL (2017) Draft genome sequence of a GES-5-producing Serratia marcescens isolated in southern Brazil. Braz J Microbiol 48(2):191–192. https://doi.org/10.1016/j.bjm.2016.08.002

    Article  PubMed  CAS  Google Scholar 

  33. Ribeiro VB, Falci DR, Rozales FP, Barth AL, Zavascki AP (2014) Carbapenem-resistant GES-5-producing Klebsiella pneumoniae in Southern Brazil. Braz J Infect Dis 18(2):231–232. https://doi.org/10.1016/j.bjid.2013.12.002

    Article  PubMed  Google Scholar 

  34. Braz VS, Furlan JPR, Passaglia J, Falcão JP, Stehling EG (2018) Genotypic diversity and presence of β-lactamase encoding genes in Pseudomonas aeruginosa isolated from Brazilian soils. Appl Soil Ecol 129:94–97. https://doi.org/10.1016/j.apsoil.2018.05.005

    Article  Google Scholar 

  35. Furlan JPR, Pitondo-Silva A, Stehling EG (2018) New STs in multidrug-resistant Acinetobacter baumannii harbouring β-lactamases encoding genes isolated from Brazilian soils. J Appl Microbiol 125(2):506–512. https://doi.org/10.1111/jam.13885

    Article  PubMed  CAS  Google Scholar 

  36. Martínez-Martínez L, Pascual A, Jacoby GA (1998) Quinolone resistance from a transferable plasmid. Lancet 351:797–799. https://doi.org/10.1016/S0140-6736(97)07322-4

    Article  PubMed  Google Scholar 

  37. Yamane K, Wachino JI, Suzuki S, Kimura K, Shibata N, Kato H, Shibayama K, Konda T, Arakawa Y (2007) New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 51:3354–3360. https://doi.org/10.1128/AAC.00339-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhao HY, Dang H (2012) Coastal seawater bacteria harbor a large reservoir of plasmid-mediated quinolone resistance determinants in Jiaozhou Bay, China. Microb Ecol 64:187–199. https://doi.org/10.1007/s00248-012-000-z

    Article  PubMed  CAS  Google Scholar 

  39. Cayci YT, Coban AY, Gunaydin M (2014) Investigation of plasmid-mediated quinolone resistance in Pseudomonas aeruginosa clinical isolates. Indian J Med Microbiol 32:285–289. https://doi.org/10.4103/0255-0857.136567

    Article  PubMed  Google Scholar 

  40. Zhang XX, Zhang T, Fang HHP (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82:397–414. https://doi.org/10.1007/s00253-008-1829-z

    Article  PubMed  CAS  Google Scholar 

  41. Adelowo OO, Vollmers J, Mäusezahl I, Kaster AK, Müller JA (2018) Detection of the carbapenemase gene blaVIM-5 in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. Sci Rep 8:15116. https://doi.org/10.1038/s41598-018-33535-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Martinez E, Marquez C, Ingold A, Merlino J, Djordjevic SP, Stokes HW, Chowdhury PR (2012) Diverse mobilized class 1 integrons are common in the chromosomes of pathogenic Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 56:2169–2172. https://doi.org/10.1128/AAC.06048-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hishinuma T, Tada T, Kuwahara-Arai K, Yamamoto N, Shimojima M, Kirikae T (2018) Spread of GES-5 carbapenemase-producing Pseudomonas aeruginosa clinical isolates in Japan due to clonal expansion of ST235. PLoS ONE 13:e0207134. https://doi.org/10.1371/journal.pone.0207134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Jain S, Bhatt A (2014) Molecular and in situ characterization of cadmium-resistant diversified extremophilic strains of Pseudomonas for their bioremediation potential. 3 Biotech 4:297–304. https://doi.org/10.1007/s13205-013-0155-z

    Article  PubMed  Google Scholar 

  45. Scales BS, Erb-Downward JR, Huffnagle IM, LiPuma JJ, Huffnagle GB (2015) Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs. BMC Genomics 16:1032. https://doi.org/10.1186/s12864-015-2261-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pitondo-Silva A, Gonçalves GB, Stehling EG (2016) Heavy metal resistance and virulence profile in Pseudomonas aeruginosa isolated from Brazilian soils. APMIS 124:681–688. https://doi.org/10.1111/apm.12553

    Article  PubMed  CAS  Google Scholar 

  47. Serra C, Bouharkat B, Toull-Meddah GS, Mullie C (2019) MexXY multidrug efflux system is more frequently overexpressed in ciprofloxacin Resistant French clinical isolates compared to hospital environment ones. Front Microbiol 10:366. https://doi.org/10.3389/fmicb.2019.00366

    Article  PubMed  PubMed Central  Google Scholar 

  48. Horna G, López M, Guerra H, Saénz Y, Ruiz J (2018) Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep 8:16463. https://doi.org/10.1038/s41598-018-34694-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lee A, Mao W, Warren MS, Mistry A, Hoshino K, Okumura R, Ishida H, Lomovskaya O (2000) Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J Bacteriol 182:3142–3150. https://doi.org/10.1128/jb.182.11.3142-3150.2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hou A, Yang D, Miao J, Shi D, Yin J, Yang Z, Shen Z, Wang H, Qiu Z, Liu W, Li J, Jin M (2019) Chlorine injury enhances antibiotic resistance in Pseudomonas aeruginosa through over expression of drug efflux pumps. Water Res 156:366–371. https://doi.org/10.1016/j.watres.2019.03.035

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grant Number 2018/19539-0]. The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant Numbers 88882.180855/2018-01, 88887.314388/2019-00 and Finance Code 001) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (Grant Number 2018/01890-3) for fellowships. The authors also thank the Companhia Ambiental do Estado de São Paulo (CETESB) for providing water samples from the São Paulo State.

Author information

Authors and Affiliations

Authors

Contributions

TAC and EAS provided the water samples and some isolates. MSR, JPRF, IFLG, and LDRS conducted the experiments. MSR and JPRF analyzed data and prepared the manuscript draft. EGS revised and approved the final manuscript.

Corresponding author

Correspondence to Eliana Guedes Stehling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, M.S., Furlan, J.P.R., Gallo, I.F.L. et al. High Level of Resistance to Antimicrobials and Heavy Metals in Multidrug-Resistant Pseudomonas sp. Isolated from Water Sources. Curr Microbiol 77, 2694–2701 (2020). https://doi.org/10.1007/s00284-020-02052-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02052-w

Navigation