Skip to main content

Advertisement

Log in

Genotyping of Campylobacter jejuni Isolates from Poultry by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Campylobacter jejuni is the leading bacterial foodborne pathogen that causes human acute gastrointestinal illness worldwide. Due to its genetic diversity, fastidious growth and sophisticated biochemical requirements, classification of Campylobacter by traditional techniques is problematic. Several molecular typing methods have been explored in this bacterium. One such method is to use clustered regularly interspaced short palindromic repeats (CRISPR). These CRISPRs consist of a direct repeat interspaced with nonrepetitive spacer sequences. In this study, we applied this genotyping method to explore the genetic diversity of C. jejuni isolated from poultry sources. Ninety-nine C. jejuni isolates from poultry environments in four different US states were used. Genomic DNA of the isolates were extracted from cultures using a commercial kit. PCR primers and conditions for CRISPR type 1 amplification were described previously. The amplicons were purified and sequenced by the Sanger dideoxy sequencing method. The direct repeats (DR) and spacers of the CRISPR sequences were identified using the CRISPRFinder. The results show there were 21% isolates no detectable, 30% isolates questionable, and 49% isolates confirmed CRISPR, respectively. The lengths of CRISPR range from 100 to 695 nucleotides. One type of DR was found in CRISPR of these isolates. The number of spacers in CRISPR ranges from 1 to 10 with various sequences. A total of 55 distinctive spacer sequences were identified in 78 isolates. Among them, 33 sequences were found unique in this study. In addition, the CRISPR genotyping had higher the Simpson’s index of diversity value than that from flaA nucleotide typing. The results of our study show the CRISPR genotyping on C. jejuni may be complementary to the other genotyping methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altekruse SF, Stern NJ, Fields PI, Swerdlow DL (1999) Campylobacter jejuni: an emerging foodborne pathogen. Emerg Infect Dis 5:28–35. https://doi.org/10.3201/eid0501.990104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ (2008) Host-pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev 21:505–518. https://doi.org/10.1128/CMR.00055-07

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kubota K, Kasuga F, Iwasaki E, Inagaki S, Sakurai Y, Komatsu M, Toyofuku H, Angulo FJ, Scallan E, Morikawa K (2011) Estimating the burden of acute gastroenteritis and foodborne illness caused by Campylobacter, Salmonella, and Vibrio parahaemolyticus by using population-based telephone survey data, Miyagi Prefecture, Japan, 2005 to 2006. J Food Prot 74:1592–1598. https://doi.org/10.4315/0362-028X.JFP-10-387

    Article  PubMed  Google Scholar 

  4. Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, Döpfer D, Fazil A, Fischer-Walker CL, Hald T, Hall AJ, Keddy KH, Lake RJ, Lanata CF, Torgerson PR, Havelaar AH, Angulo FJ (2015) World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med 12:e1001921. https://doi.org/10.1371/journal.pmed.1001921

    Article  PubMed  PubMed Central  Google Scholar 

  5. Crim SM, Griffin PM, Tauxe R, Marder EP, Gilliss D, Cronquist AB, Cartter M, Tobin-D'Angelo M, Blythe D, Smith K, Lathrop S, Zansky S, Cieslak PR, Dunn J, Holt KG, Wolpert B, Henao OL (2015) Preliminary incidence and trends of infection with pathogens transmitted commonly through food—foodborne diseases active surveillance network, 10 U.S. sites, 2006–2014. Morb Mortal Wkly Rep 64:495–499

    Google Scholar 

  6. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Food-borne illness acquired in the United States – major pathogens. Emerg Infect Dis 17:7–15. https://doi.org/10.3201/eid1701.P11101

    Article  PubMed  PubMed Central  Google Scholar 

  7. European Food Safety Authority (2010) The community summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2008. EFSA J 8:1496. https://doi.org/10.2903/j.efsa.2010.1496

    Article  Google Scholar 

  8. Hermans D, Pasmans F, Messens W, Martel A, Van Immerseel F, Rasschaert G, Heyndrickx M, Van Deun K, Haesebrouck F (2012) Poultry as a host for the zoonotic pathogen Campylobacter jejuni. Vector Borne Zoonotic Dis 12:89–98. https://doi.org/10.1089/vbz.2011.0676

    Article  PubMed  Google Scholar 

  9. Ryan KJ, Ray CG, Sherris JC (2004) Sherris medical microbiology: an introduction to infectious diseases, 4th edn. McGraw-Hill, New York

    Google Scholar 

  10. Ursing JB, Lior H, Owen RJ (1994) Proposal of minimal standards for describing new species of the family Campylobacteraceae. Int J Syst Bacteriol 44:842–845. https://doi.org/10.1099/00207713-44-4-842

    Article  CAS  PubMed  Google Scholar 

  11. Chaisowwong W, Kusumoto A, Hashimoto M, Harada T, Maklon K, Kawamoto K (2012) Physiological characterization of Campylobacter jejuni under cold stresses conditions: its potential for public threat. J Vet Med Sci 74:43–50. https://doi.org/10.1292/jvms.11-0305

    Article  CAS  PubMed  Google Scholar 

  12. Wu ZW, Sahin O, Shen ZQ, Liu P, Miller WG, Zhang QJ (2013) Multi-omics approaches to deciphering a hypervirulent strain of Campylobacter jejuni. Genome Biol Evol 5:2217–2230. https://doi.org/10.1093/gbe/evt172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lin J (2009) Novel approaches for Campylobacter control in poultry. Foodborn Pathog Dis 6:755–765. https://doi.org/10.1089/fpd.2008.0247

    Article  CAS  Google Scholar 

  14. Sahin O, Kassem II, Shen Z, Lin J, Rajashekara G, Zhang Q (2015) Campylobacter in poultry: ecology and potential interventions. Avian Dis 59:185–200. https://doi.org/10.1637/11072-032315-Review

    Article  PubMed  Google Scholar 

  15. On SLW, Jordan PJ (2003) Evaluation of 11 PCR assays for species-level identification of Campylobacter jejuni and Campylobacter coli. J Clin Microbiol 41:330–336. https://doi.org/10.1128/jcm.41.1.330-336.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dingle KE, Colles FM, Wareing DR, Ure R, Fox AJ, Bolton FE, Bootsma HJ, Willems RJ, Urwin R, Maiden MC (2001) Multilocus sequencing typing system for Campylobacter jejuni. J Clin Microbiol 39:14–23. https://doi.org/10.1128/JCM.39.1.14-23.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ge B, Girard W, Zhao S, Friedman S, Gaines SA, Meng J (2006) Genotyping of Campylobacter spp. from retail meats by pulsed-field gel electrophoresis and ribotyping. J Appl Microbiol 100:175–184. https://doi.org/10.1111/j.1365-2672.2005.02750.x

    Article  CAS  PubMed  Google Scholar 

  18. Schouls LM, Reulen S, Duim B, Wagenaar JA, Willems RJ, Dingle KE, Colles FM, Van Embden JD (2003) Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination. J Clin Microbiol 41:15–26. https://doi.org/10.1128/jcm.41.1.15-26.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clark CG, Beeston A, Bryden L, Wang G, Barton C, Cuff W, Gilmour MW, Ng LK (2007) Phylogenetic relationships of Campylobacter jejuni based on porA sequences. Can J Microbiol 53:27–38. https://doi.org/10.1139/w06-099

    Article  CAS  PubMed  Google Scholar 

  20. Cody AJ, Maiden MJ, Dingle KE (2009) Genetic diversity and stability of the porA allel as a genetic marker in human Campylobacter infection. Microbiology 155:4145–4154. https://doi.org/10.1099/mic.0.031047-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Merchant-Patel S, Blackall PJ, Templeton J, Price EP, Tong SY, Huygens F, Giffard PM (2010) Campylobacter jejuni and Campylobacter coli genotyping by high-resolution melting analysis of a flaA fragment. Appl Environ Microbiol 76:493–499. https://doi.org/10.1128/AEM.01164-09

    Article  CAS  PubMed  Google Scholar 

  22. de Cárdenas I, Fernández-Garayzábal JF, de la Cruz M-L, Domínguez L, Ugarte-Ruiz M, Gómez-Barrero S (2015) Efficacy of a typing scheme for Campylobacter based on the combination of true and questionable CRISPR. J Microbiol Methods 119:147–153. https://doi.org/10.1016/j.mimet.2015.10.020

    Article  CAS  PubMed  Google Scholar 

  23. Gomes CN, Souza RA, Passaglia J, Duque SS, Medeiros MIC, Falcão JP (2016) Genotyping of Campylobacter coli strains isolated in Brazil suggests possible contamination amongst environmental, human, animal and food sources. J Med Microbiol 65:80–90. https://doi.org/10.1099/jmm.0.000201

    Article  CAS  PubMed  Google Scholar 

  24. Kovanen SM, Kivistö RI, Rossi M, Hänninen M-L (2014) A combination of MLST and CRISPR typing reveals dominant Campylobacter jejuni types in organically farmed laying hens. J Appl Microbiol 117:249–257. https://doi.org/10.1111/jam.12503

    Article  CAS  PubMed  Google Scholar 

  25. Louwen R, Horst-Kreft D, de Boer AG, van der Graaf L, de Knegt G, Hamersma M, Heikema AP, Timms AR, Jacobs BC, Wagenaar JA, Endtz HP, van der Oost J, Wells JM, Nieuwenhuis EES, van Vliet AHM, Willemsen PTJ, van Baarlen P, van Belkum A (2013) A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain-Barré syndrome. Eur J Clin Microbiol Infect Dis 32:207–226. https://doi.org/10.1007/s10096-012-1733-4

    Article  CAS  PubMed  Google Scholar 

  26. Price EP, Smith H, Huygens F, Giffard PM (2007) High-resolution DNA melt curve analysis of the clustered, regularly interspaced short-palindromic-repeat locus of Campylobacter jejuni. Appl Environ Microbiol 73:3431–3436. https://doi.org/10.1128/AEM.02702-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tasaki E, Hirayama J, Tazumi A, Hayashi K, Hara Y, Ueno H, Moore JE, Millar BC, Matsuda M (2012) Molecular identification and characterization of clustered regularly interspaced short palindromic repeats (CRISPRs) in a urease-positive thermophilic Campylobacter sp. (UPTC). World J Microbiol Biotechnol 28:713–720. https://doi.org/10.1007/s11274-011-0867-3

    Article  CAS  PubMed  Google Scholar 

  28. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishino Y, Krupovic M, Forterre P (2018) History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 200:e00580–e617. https://doi.org/10.1128/JB.00580-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grissa I, Vergnaud G, Pourcel C (2009) Clustered regularly interspaced short palindromic repeats (CRISPRs) for the genotyping of bacterial pathogens. Methods Mol Biol 551:105–116. https://doi.org/10.1007/978-1-60327-999-4_9

    Article  CAS  PubMed  Google Scholar 

  31. Barrangou R, Horvath P (2009) The CRISPR system protects microbes against phages, plasmids. Microbe 4:224–230. https://doi.org/10.1128/microbe.4.224.1

    Article  Google Scholar 

  32. Louwen R, Staals RHJ, Endtz HP, van Baarlen P, van der Oost J (2014) The role of CRISPR-Cas systems in virulence of pathogenic bacteria. Microbiol Mol Biol Rev 78:74–88. https://doi.org/10.1128/MMBR.00039-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahmed W, Hafeez MA, Ahmad R, Mahmood S (2018) CRISPR-Cas system in regulation of immunity and virulence of bacterial pathogens. Gene Rep 13:151–157. https://doi.org/10.1016/j.genrep.2018.10.004

    Article  Google Scholar 

  34. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E (2018) The biology of CRIPR-Cas: background and forward. Cell 171:1239–1259. https://doi.org/10.1016/j.cell.2017.11.032

    Article  CAS  Google Scholar 

  35. Shariat N, Dudley EG (2014) CRISPRs: molecular signatures used for pathogen subtyping. Appl Environ Microbiol 80:430–439. https://doi.org/10.1128/AEM.02790-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hiett KL, Stintzi A, Andacht TM, Kuntz RL, Seal BS (2008) Genomic differences between Campylobacter jejuni isolates identify surface membrane and flagellar function gene products potentially important for colonizing the chicken intestine. Funct Integr Genom 8:407–420. https://doi.org/10.1007/s10142-008-0087-6

    Article  CAS  Google Scholar 

  37. Yeh H, Hiett KL, Line JE, Oakley BB, Seal BS (2013) Construction, expression, purification and antigenicity of recombinant Campylobacter jejuni flagellar proteins. Microbiol Res 168:192–198. https://doi.org/10.1016/j.micres.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  38. Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–57. https://doi.org/10.1093/nar/gkm360

    Article  PubMed  PubMed Central  Google Scholar 

  39. Carriço JA, Silva-Costa C, Melo-Cristino J, Pinto FR, de Lencastre H, Almeida JS, Ramirez M (2006) Illustration of a common framework for relating multiple typing methods by application to macrolide-resistant Streptococcus pyogenes. J Clin Microbiol 44:2524–2532. https://doi.org/10.1128/JCM.02536-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Susan Q. Brooks and Manju Amin of Poultry Microbiological Safety and Processing Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, USA for the technical supports. Amal Awad, an Egyptian Junior Scientist, was supported by the U.S.—Egypt Science and Technology Joint Fund, Cairo, Egypt. This study was supported by the USDA Agricultural Research Service CRIS Project No. 6040-32000-071-00D. Mention of trade names or commercial products in this paper is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture, which is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Contributions

HY and AA conceived, designed and performed the experiments, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Hung-Yueh Yeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 15 kb)

Supplementary file2 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, HY., Awad, A. Genotyping of Campylobacter jejuni Isolates from Poultry by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). Curr Microbiol 77, 1647–1652 (2020). https://doi.org/10.1007/s00284-020-01965-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01965-w

Navigation