Skip to main content
Log in

The Effect of Auxin and Auxin-Producing Bacteria on the Growth, Essential Oil Yield, and Composition in Medicinal and Aromatic Plants

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Aromatic plants had been used since ancient times for their preservative and medicinal properties, and to impart aroma and flavor to food. Also their secondary metabolites are economically important as drugs, flavor and fragrances, pharmaceuticals, agrochemicals, dye, and pigments, pesticides, cosmetics, food additives, other industrially biochemical, and also play a major role in the adaptation of plants to their environment. Indole acetıc acid-producing rhizobacteria inoculations increase in stomatal density and level of secondary metabolite and have a synergistic effect on monoterpene biosynthesis. Bacterial inoculation significantly affected and increased the chemical composition of essential oil, citronellol, and geraniol content in rose-scented geranium; essential oil composition and total phenolic content in marigold; density, number, and size of glandular trichomes in sweet wormwood and peppermint essential oil components such as geranyl acetate, limonene, and β–pinene in coriander; oil yield and content in calendula; yield of the herb in hyssop; oxygenated compounds, essential oil content and yield, anethol and changing the chemical composition in fennel; growth, number of glandular trichomes and essential oil yield, root branching and length, and total amount of essential oil, production of monoterpenes such as pulegone, menthol, menthone, menthofuran, and terpineol content, biosynthesis of secondary metabolites in peppermint; growth and essential oil yield in marjoram; glandular hair abundance, essential oil yield, and monoterpene biosynthesis in basil; phellandrene, limonene, borneol, and campor in rosemary; carvacrol, thymol, linalool, and borneol in oregano; and α-thujene, α-pinene, α-terpinene, p-simen, β–pinene, and γ-terpinene contents and essential oil yield in summer savory. Inoculation with IAA-producing bacteria medicinal roots increased the valerenic acid in valerian, essential oil and quality in vetiver, curcumin content in turmeric alkaloid and ginsenoside content in ginseng, and inulin content in Jerusalem artichoke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071–1078

    PubMed  CAS  Google Scholar 

  2. Bulgarelli D, Schlaeppi K, Spaepen S, Loren V, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    PubMed  CAS  Google Scholar 

  3. Spaepen S (2015) Plant hormones produced by microbes. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Switzerland, pp 247–256

    Google Scholar 

  4. Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Jamil M, Charnikhova T, Houshyani B, Van Ast A, Bouwmeester HJ (2012) Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 235:473–484

    PubMed  CAS  Google Scholar 

  6. Robles LM, Deslauriers SD, Alvarez AA, Larsen PB (2012) A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. J Exp Bot 63:2231–2241

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Miransari M, Abrishamchi A, Khoshbakht K, Niknam V (2014) Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol 34:123–133

    PubMed  CAS  Google Scholar 

  8. Blomster T, Salojärvi J, Sipari N, Brosche M, Ahlfors R, Keinänen M, Overmyer K, Kangasjärvi J (2011) Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiol 157:1866–1883

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Facella P, Daddiego L, Giuliano G, Perrotta G (2012) Gibberellin and auxin influence the diurnal transcription pattern of photoreceptor genes via CRY1a in tomato. PLoS ONE 7:1–10

    Google Scholar 

  10. Muday GK, Rahman A, Binder BM (2012) Auxin and ethylene: collaborators or competitors? Trends Plant Sci 17:181–195

    PubMed  CAS  Google Scholar 

  11. Simon S, Petrášek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460

    PubMed  CAS  Google Scholar 

  12. Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773

    PubMed  Google Scholar 

  13. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    PubMed  PubMed Central  CAS  Google Scholar 

  14. De Rybel B, Audenaert D, Beeckman T, Kepinski S (2009) The past, present, and future of chemical biology in auxin research. ACS Chem Biol 4:987–998

    PubMed  Google Scholar 

  15. Tivendale ND, Cohen JD (2015) Analytical history of auxin. J Plant Growth Regul 34:708–722

    CAS  Google Scholar 

  16. Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125

    PubMed  CAS  Google Scholar 

  17. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    PubMed  CAS  Google Scholar 

  18. Mehnaz S (2015) Azospirillum a biofertilizer for every crop. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, India, pp 297–314

    Google Scholar 

  19. Couillerot O, Ramírez-Trujillo A, Walker V, Von Felten A, Jansa J, Maurhofer M, Défago G, Prigent-Combaret C, Comte G, Caballero-Mellado J, Moënne-Loccoz Y (2013) Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth. Appl Microbiol Biotechnol 97:4639–4649

    PubMed  CAS  Google Scholar 

  20. Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    CAS  Google Scholar 

  21. Frankenberger WT, Brunner W (1983) Methods of detection of auxin-indole acetic acid in soil by high performance liquid chromatography. Soil Sci Soc Am J 47:237–241

    CAS  Google Scholar 

  22. Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  23. Aslantaş R, Çakmakçı R, Şahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111:371–377

    Google Scholar 

  24. Çakmakçı R, Erat M, Oral B, Erdogan Ü, Şahin F (2009) Enzyme activities and growth promotion of spinach by indole-3-acetic acid-producing rhizobacteria. J Hortic Sci Botech 84:375–380

    Google Scholar 

  25. Barnawal D, Bharti N, Tripathi A, Pandey SS, Chanotiya CS, Kalra A (2016) ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul 35:553–564

    CAS  Google Scholar 

  26. Kreiser M, Giblin C, Murphy R, Fiesel P, Braun L, Johnson G, Wyse D, Cohen JD, (2016) Conversion of indole-3-butyric acid to indole-3-acetic acid in shoot tissue of hazelnut (Corylus) and elm (Ulmus). J Plant Growth Regul 35:710–721

    CAS  Google Scholar 

  27. Çakmakçı R, Erat M, Erdoğan Ü, Dönmez F (2007) The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Google Scholar 

  28. Egamberdieva D (2011) Indole-acetic acid production by root associated bacteria and its role in plant growth and development. In: Keller AH, Fallon MD (eds) Auxins: structure, biosynthesis and functions. Nova Science Publishers, USA, pp 1–14

    Google Scholar 

  29. Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484–494

    PubMed  CAS  Google Scholar 

  30. Costa MH, Souza-Filho JDC, Ribeiro A (2004) Comments on “The regional evapotranspiration of the Amazon”. J Hydrometeorol 5:1279–1280

    Google Scholar 

  31. Khalid A, Tahir S, Arshad M, Zahir ZA (2004) Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Soil Res 42:921–926

    CAS  Google Scholar 

  32. Lin L, Xu X (2013) Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr Microbiol 67:209–217

    PubMed  CAS  Google Scholar 

  33. Souza R, Beneduzi A, Ambrosini A, Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603

    Google Scholar 

  34. Rohini S, Aswani R, Kannan M, Sylas VP, Radhakrishnan EK (2018) Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Curr Microbiol 75:505–511

    PubMed  CAS  Google Scholar 

  35. Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    PubMed  PubMed Central  Google Scholar 

  36. Ahmed A, Hasanian S (2014) Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria. Pol J Microbiol 63:261–266

    PubMed  Google Scholar 

  37. Roy BD, Deb B, Sharma GD (2010) Role of acetic acid bacteria in biological nitrogen fixation. Biofrontiers 2:47–57

    Google Scholar 

  38. Khan Z, Doty SL (2009) Characterization of bacterial endophytes of sweet potato plants. Plant Soil 322:197–207

    CAS  Google Scholar 

  39. Narayana KJ, Peddikotla P, Krishna PSJ, Yenamandra V, Muvva V (2009) Indole-3-acetic acid production by Streptomyces albidoflavus. J Biol Res 11:49–55

    Google Scholar 

  40. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-aceticacid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    PubMed  CAS  Google Scholar 

  41. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    PubMed  PubMed Central  Google Scholar 

  42. Etesami H, Hosseini HM, Alikhani HA, Mohammadi L (2014) Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. J Plant Growth Regul 33:654–670

    CAS  Google Scholar 

  43. Jasim B, Geethu PR, Mathew J, Radhakrishnan EK (2015) Effect of endophytic Bacillus sp. from selected medicinal plants on growth promotion and diosgenin production in Trigonella foenum-graecum. Plant Cell Tiss Org 122:565–572

    CAS  Google Scholar 

  44. Brandl MT, Lindow SE (1998) Contribution of indole-3-acetic acid production to the epiphytic fitness of Erwinia herbicola. Appl Environ Microbiol 64:3256–3263

    PubMed  PubMed Central  CAS  Google Scholar 

  45. De Salamone IEG, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 173–195a

    Google Scholar 

  46. Etesami H, Alikhani HA, Mirseyed Hosseini H (2015) Indol-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice promoting agents. MethodsX 2:72–78

    PubMed  PubMed Central  Google Scholar 

  47. James EK, Gyaneshwar P, Mathan N, Barraquio WL, Reddy PM, Iannetta PP, Olivares FL, Ladha JK (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe In 15:894–906

    CAS  Google Scholar 

  48. Chi F, Shen SH, Cheng HP, Jing YX, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic rhizobia, from roots to leaves inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Davies PJ (2010) The plant hormones: their nature, occurrence and functions. In: Davies PJ (ed) Plant hormones. Springer, Dordrecht, pp 1–15

    Google Scholar 

  50. Egorshina AA, Khairullin RM, Sakhabutdinova AR, Luk'yantsev MA, (2012) Involvement of phytohormones in the development of interaction between wheat seedlings and endophytic Bacillus subtilis strain 11BM. Russ J Plant Physiol 59:134–140

    CAS  Google Scholar 

  51. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Lagendre L, Wisniewski-Dyé F, Combaret CP (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    PubMed  PubMed Central  Google Scholar 

  52. Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35:877–902

    CAS  Google Scholar 

  53. Barnawal A, Maji D, Bharti N, Chanotiya CS, Kalra A (2013) ACC deaminase-containing Bacillus subtilis reduces stress ethylene-ınduced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stress. J Plant Growth Regul 32:809–822

    CAS  Google Scholar 

  54. Goswami D, Dhandhukia P, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75

    PubMed  CAS  Google Scholar 

  55. Erdoğan U, Çakmakçı R, Varmazyari A, Turan M, Erdoğan Y, Kıtır N (2016) Role of inoculation with multi-trait rhizobacteria on strawberries under water deficit stress. Zemdirbyste 103:67–76

    Google Scholar 

  56. Kampert M, Strzelczyk E, Pokojska A (1975) Production of auxins by bacteria isolated from the roots of pine seedlings (Pinus silvestris L.). Acta Microbiol Pol B 7:135–143

    PubMed  CAS  Google Scholar 

  57. Strzelczyk E, Pokojska-Burdziej A (1984) Production of auxins and gibberellin like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and mycorhizosphere of pine (Pinus silvestris L.). Plant Soil 81:185–194

    CAS  Google Scholar 

  58. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    CAS  Google Scholar 

  59. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    PubMed  CAS  Google Scholar 

  60. Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92–105

    CAS  Google Scholar 

  61. Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  63. Belimov AA (2012) Interactions between associative bacteria and plants: the role of biotic and abiotic factors. Palmarium Acad Publ, Moscow

    Google Scholar 

  64. Çakmakçı R (2016) Screening of multi-trait rhizobacteria for improving the growth, enzyme activities, and nutrient uptake of tea (Camellia sinensis). Commun Soil Sci Plan 47:1680–1690

    Google Scholar 

  65. Ortiz-Castro R, Martinez-Trujillo M, Lopez-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    PubMed  CAS  Google Scholar 

  66. Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: Separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583:475–480

    PubMed  CAS  Google Scholar 

  67. Çakmakçı R, Dönmez MF, Erdoğan Ü (2007) The effect of plant growth promoting rhizobacteria on barley seedling growth, nutrient uptake, some soil properties, and bacterial counts. Turk J Agric For 31:189–199

    Google Scholar 

  68. Swain MR, Naskar SK, Ray RC (2007) Indole 3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol J Microbiol 56:103–110

    PubMed  CAS  Google Scholar 

  69. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    PubMed  CAS  Google Scholar 

  70. Hariprasad P, Niranjana SR (2009) Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 16:13–24

    Google Scholar 

  71. Merzaeva OV, Shirokikh IG (2010) The production of auxins by the endophytic bacteria of winter rye. Appl Biochem Microbiol 46:44–50

    CAS  Google Scholar 

  72. Apine OA, Jadhav JP (2011) Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J Appl Microbiol 110:1235–1244

    PubMed  CAS  Google Scholar 

  73. Celloto VR, Oliveira AJB, Gonçalves JE, Watanabe CSF, Matioli G, Gonçalves RAC (2012) Biosynthesis of indole-3-acetic acid by new Klebsiella oxytoca free and immobilized cells on inorganic matrices. Sci World J 2012:1–7

    Google Scholar 

  74. Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    PubMed  CAS  Google Scholar 

  75. Vendan RT, Yu YJ, Lee SH, Rhee YH (2010) Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J Microbiol 48:559–565

    PubMed  CAS  Google Scholar 

  76. Shakeela S, Padder SA, Bhat ZA (2017) Isolation and characterization of plant growth promoting rhizobacteria associated with medicinal plant Picrorhiza kurroa. J Pharmacogn Phytochem 6:157–168

    CAS  Google Scholar 

  77. Mitra D, Sharma K, Uniyal N, Chauhan A, Sarkar P (2016) Study on plant hormone (indole-3-acetic acid) producing level and other plant growth promotion ability (PGPA) by Asparagus racemosus (L.) rhizobacteria. J Chem Pharm Res 8:995–1002

    CAS  Google Scholar 

  78. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. JKSUS 26:1–20

    Google Scholar 

  79. Chandler JW (2011) The hormonal regulation of flower development. J Plant Growth Regul 30:242–254

    CAS  Google Scholar 

  80. Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P (2011) Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant Cell 23:550–566

    PubMed  PubMed Central  CAS  Google Scholar 

  81. McSteen P (2010) Auxin and monocot development. CSH Perspect Biol 2:1–27

    Google Scholar 

  82. Bellini C, Pacurar D, Perrone I (2014) Adventitious roots and lateral roots: similarities and differences. Annu Rev Plant Biol 65:639–666

    PubMed  CAS  Google Scholar 

  83. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. P Nat Acad Sci USA 93:9282–9286

    CAS  Google Scholar 

  84. Brcko A, Pĕnčík A, Magnus V, Prebeg T, Mlinarić S, Antunović J, Lepeduš H, Cesar V, Strnad M, Rolčík J, Salopek-Sondi B (2012) Endogenous auxin profile in the christmas rose (Helleborus niger L.) flower and fruit: free and amide conjugated IAA. J Plant Growth Regul 31:63–78

    CAS  Google Scholar 

  85. Villacorta NF, Fernández H, Prinsen E, Bernad PL, Revilla MA (2008) Endogenous hormonal profiles in hop development. J Plant Growth Regul 27:93–98

    CAS  Google Scholar 

  86. Bhattacharyya D, Garladinne M, Lee YH (2015) Volatile ındole produced by rhizobacterium Proteus vulgaris JBLS202 stimulates growth of Arabidopsis thaliana through auxin, cytokinin, and brassinosteroid pathways. J Plant Growth Regul 34:158–168

    CAS  Google Scholar 

  87. Tao Y, Ferrer J, Ljung K, Pojer F, Hong F, Long JA, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Mohebalipour N, Aharizad S, Mohammadi SA, Motallebiazar AR, Maddah Arefi H (2012) Effect of plant growth regulators BAP and IAA on micropropagation of Iranian lemon balm (Melissa officinalis L.) landraces. JFAE 10:280–286

    CAS  Google Scholar 

  89. Spaepen S, Versees W, Gocke D, Pohl M, Steyaert J, Vanderleyden J (2007) Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. J Bacteriol 18:7626–7633

    Google Scholar 

  90. Taiz L, Zeiger E (2010) Plant Physiology, 5th edn. Massachusetts, USA

    Google Scholar 

  91. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  92. Hagen G (1990) The Control of gene expression by auxin. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Kluwer Academic Publishers, Netherlands, pp 149–163

    Google Scholar 

  93. Niklas KJ, Kutschera U (2012) Plant development, auxin, and the subsystem incompleteness theorem. Front Plant Sci 3:1–11

    Google Scholar 

  94. Tanimoto E (2005) Regulation of root growth by plant hormones: roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265

    CAS  Google Scholar 

  95. Wu H, Hazak O, Cheung AY, Yalovsky S (2011) RAC/ROP GTPases and auxin signaling. Plant Cell 23:1208–1218

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Lang D, Lyu D, Zhu Z, Qin S, (2019) Exogenous glucose mediates the regulation of root morphology and carbon–nitrogen metabolism by ındole-3-acetic acid (IAA) in Malus baccata (L.) Borkh. in soil with low organic carbon content. J Plant Growth Regul 38:1–18

    Google Scholar 

  97. Silva S, Sato A, Lage CLS, San Gil RAS, Azevedo DA, Esquibel MA (2005) Essential oil composition of Mellisa officinalis L. in vitro produced under the influence of growth regulators. J Brazil Chem Soc 16:1387–1390

    Google Scholar 

  98. Feizbakhsh A, Pazoki H, Mohammadrezaei V, Ebrahimzadeh MA (2014) Effect of phytohormones on the composition of Sambucus ebulus leaf essential oil. Trop J Pharm Res 13:581–586

    CAS  Google Scholar 

  99. Reda F, Abd El-Wahed MSA, Gamal El-Din KM (2010) Effect of indole acetic acid, gibberellic acid and kinetin on vegetative growth, flowering and essential oil pattern of chamomile plant. WJAS 6:595–600

    CAS  Google Scholar 

  100. Monfort LEF, Bertolucci SKV, Lima AF, de Carvalho AA, Mohammed A, Blank AF, Pinto JEBP (2018) Effects of plant growth regulators, different culture media and strength MS on production of volatile fraction composition in shoot cultures of Ocimum basilicum. Ind Crops Prod 116:231–239

    CAS  Google Scholar 

  101. Castilho CVV, Leitão SG, Silva VD, Miranda CdO, C, Santos MCdS, Bizzo HR, da Silva NCB, (2019) In vitro propagation of a carvacrol-producing type of Lippia origanoides Kunth: a promising oregano-like herb. Ind Crops Prod 130:491–498

    CAS  Google Scholar 

  102. Hazzoumi Z, Moustakime Y, Joutei KA (2014) Effect of gibberellic acid (GA3), indole acetic acid (IAA) and benzylaminopurine (BAP) on the synthesis of essential oils and the isomerization of methyl chavicol and trans-anethole in Ocimum gratissimum L. Springerplus 3:1–7

    Google Scholar 

  103. Rohamare Y, Nikam TD, Dhumal KN (2013) Effect of foliar application of plant growth regulators on growth, yield and essential oil components of Ajwain (Trachyspermum ammi L.). Int J Seed Spices 3:34–41

    Google Scholar 

  104. Nourafcan H, Sefidkon F, Ahmad Khalighi A, Mousavi A, Sharifi M (2014) Effects of IAA and BAP on chemical composition and essential oil content of lemon verbena (Lippia citriodora H.B.K). J Herb Med 5:25–32

    Google Scholar 

  105. Li Z, Wang X, Chen F, Kim HJ (2007) Chemical changes and overexpressed genes in sweet basil (Ocimum basilicum L.) upon methyl jasmonate treatment. J Agr Food Chem 55:706–713

    CAS  Google Scholar 

  106. Koseva-kovacheva D, Stanev D (1978) Effect of some growth regulators and hydrogen peroxide on the content and quality of peppermint oil. Resteniednidni u Nauki 15:21–25

    CAS  Google Scholar 

  107. El-Keltawi NE, Croteau R (1987) Influence of foliar applied cytokinins on growth and essential oil content of several members of the Lamiaceae. Phytochemistry 26:891–895

    CAS  Google Scholar 

  108. Sudriá C, Palazón J, Cusidó R, Bonfill M, Piñol MT, Morales C (2001) Effect of benzyladenine and indolebutyric acid on ultrastructure, glands formation, and essential oil accumulation in Lavandula dentata plantlets. Biol Plantarum 44:1–6

    Google Scholar 

  109. Affonso VR, Bizzo HR, Lima SS, Esquibel MA, Sato A (2007) Solid phase microextraction (SPME) analysis of volatile compounds produced by in vitro shoots of Lantana camara L. under the influence of auxins and sytokinins. J Brazil Chem Soc 18:1504–1508

    CAS  Google Scholar 

  110. Affonso VR, Bizzo HR, Lage CLS, Sato A (2009) Influence of growth regulators in biomass production and volatile profile of in vitro plantlets of Thymus vulgaris L. J Agr Food Chem 57:6392–6395

    CAS  Google Scholar 

  111. Victório CP, Kuster RM, Lage CLS (2011) Leaf and root volatiles produced by tissue cultures of Alpinia zerumbet (pers.) Burtt & Smith under the influence of different plant growth regulators. Quím Nova 34:430–433

    Google Scholar 

  112. Kikowska M, Thiem B, Sliwinska E, Rewers M, Kowalczyk M, Stochmal A, Oleszek W (2014) The effect of nutritional factors and plant growth regulators on micropropagation and production of phenolic acids and saponins from plantlets and adventitious root cultures of Eryngium maritimum L. J Plant Growth Regul 33:809–819

    CAS  Google Scholar 

  113. De Oliveira Y, Pinto F., Da Silva ALL, Guedes I, Biasi LA, Quoirin M (2010) An efficient protocol for micropropagation of Melaleuca alternifolia Cheel. In Vitro Cell Dev–Pl 46:192–197

  114. Farooqi AHA, Fatima S, Khan A, Sharma S (2005) Ameliorative effect of chlormequat chloride and IAA on drought stressed plants of Cymbopogon martinii and C. winterianus. Plant Growth Regul 46:277–284

    CAS  Google Scholar 

  115. Sağlam AC, Yaver S, Başer İ, Cinkılıç L (2014) The effects of different hormones and their doses on rooting of stem cuttings in Anatolian sage (Salvia fruticosa Mill.). APCBEE Procedia 8:348–353

    Google Scholar 

  116. Sharma V, Kamal B, Srivastava N, Negi Y, Dobriyal AK, Jadon VS (2015) Enhancement of in vitro growth of Swertia chirayita Roxb. Ex Fleming co-cultured with plant growth promoting rhizobacteria. Plant Cell Tiss Org 121:215–225

    CAS  Google Scholar 

  117. Mehry A, Akbar M, Giti E (2008) Colonization and nitrogenase activity of Triticum aestivum (cv. Baccross and Mahdavi) to the dual inoculation with Azospirillum brasilense and Rhizobium meliloti plus 2,4-D. PJBS 11:1541–1550

    PubMed  CAS  Google Scholar 

  118. Martinez-Morales LJ, Soto-Urzua L, Baca BE, Sanchez-Ahedo JA (2003) Indole-3-butyric acid (IBA) production in culture medium by wild strain Azospirillum brasilense. FEMS Microbiol Lett 228:167–173

    PubMed  CAS  Google Scholar 

  119. Ribeiro CM, Cardoso EJBN (2012) Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil pine (Araucaria angustifolia). Microbiol Res 167:69–78

    PubMed  CAS  Google Scholar 

  120. Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  121. Fatima Z, Saleemi M, Zia M, Sultan T, Aslam M, Rehman R, Chaudhary MF (2009) Antifungal activity of plant growth-promoting rhizobacteria isolates against Rhizoctonia solani in wheat. Afr J Biotechnol 8:219–225

    CAS  Google Scholar 

  122. Banchio E, Xie X, Zhang H, Paré PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agr Food Chem 57:653–657

    CAS  Google Scholar 

  123. Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nut 13:638–649

    Google Scholar 

  124. Vinutha T (2005) Biochemical studies on Ocimum species inoculated with microbial inoculants. MSc. thesis, University of Agricultural Sciences, Bangalore, India

  125. Hemavathi VN, Shvakumar BS, Suresh CK, Earanna N (2006) Effect of Glomus fasciculatum and plant growth promoting rhizobacteria on growth and yield of Ocimum basilicum. Karnataka J Agri Sci 19:17–20

    Google Scholar 

  126. Ordookhani K, Sharafzadeh S, Zare M (2011) Influence of PGPR on growth, essential oil and nutrients uptake of sweet basil. Adv Environ Biol 5:672–677

    Google Scholar 

  127. Kaymak HÇ, Dönmez MF, Çakmakçı R (2013) N2-fixing plant growth-promoting rhizobacteria: potential to increase yield, growth and element contents of Mentha piperita L. leaves. Eur J Plant Sci Biotechnol 1:38–42

    Google Scholar 

  128. Singh S, Tripathi A, Maji D, Awasthi A, Vajpayee P, Kalra A (2019) Evaluating the potential of combined inoculation of Trichoderma harzianum and Brevibacterium halotolerans for increased growth and oil yield in Mentha arvensis under greenhouse and field conditions. Ind Crops Prod 131:173–181

    CAS  Google Scholar 

  129. Samani MR, Pirbalouti AG, Moattar F, Golparvar AR (2019) L-Phenylalanine and bio-fertilizers interaction effects on growth, yield and chemical compositions and content of essential oil from the sage (Salvia officinalis L.) leaves. Ind Crops Prod 137:1–8

    Google Scholar 

  130. Egamberdieva D, Jabborova D, Mamadalieva N (2013) Salt-tolerant Pseudomonas extremorientalis able to stimulate growth of Silybum marianum under salt stress. Med Aromat Plant Sci Biotechnol 7:7–10

    Google Scholar 

  131. Darzi MT (2012) Effect of biofertilizers application on quantitative and qualitative yield of fennel (Foeniculum vulgare) in a sustainable production system. IJACS 4:187–192

    Google Scholar 

  132. Heidari M, Mousavinik SM, Golpayegani A (2011) Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress. ARPN JABS 6:6–11

    Google Scholar 

  133. Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr Bot 2:27–30

    Google Scholar 

  134. Jaleel CA, Manivannan P, Sankar B, KishorekumarA GR, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surface B 60:7–11

    CAS  Google Scholar 

  135. Karthikeyan B, Joe MM, Jaleel CA, Deiveekasundaram M (2010) Effect of root inoculation with plant growth promoting rhizobacteria (PGPR) on plant growth, alkaloid content and nutrient control of Catharanthus roseus (L.) G. Don Nat Croat 19:205–212

    Google Scholar 

  136. Mishra RK, Pra O, Alam M, Dikshit A (2010) Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. herit. Recent Res Sci Technol 2:53–57

    CAS  Google Scholar 

  137. Hosseinzadah F, Satei A, Ramezanpour MR (2011) Effects of mycorrhiza and plant growth promoting rhizobacteria on growth, nutrient uptake and physiological characteristics in Calendula officinalis L. Middle East J Sci Res 8:947–953

    CAS  Google Scholar 

  138. Hassan F (2009) Response of Hibiscus sabdariffa L. plant to some biofertilization treatments. AOAS 54:437–446

    Google Scholar 

  139. Banchio E, Bogino PC, Zygadlo J, Giordano W (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771

    CAS  Google Scholar 

  140. Earanna N, Bagyaraj DJ (2004) Influence of AM fungi and growth promoting rhizomicroorganisms on growth and herbage yield of Phyllanthus amarus Schum. and Thom. Geobios 31:117–120

    Google Scholar 

  141. Çakmakçı R, Ertürk Y, Dönmez F, Erat M, Haznedar A, Sekban R (2012) Tea growth and yield in relation to mixed cultures of N2-fixing and phosphate solubilizing bacteria. J Ege University Faculty Agric Special Issue 1:17–21

    Google Scholar 

  142. Çakmakçı R, Ertürk Y, Sekban R, Haznedar A, Varmazyari A (2013) The Effect of single and mixed cultures of plant growth promoting bacteria and mineral fertilizers on tea (Camellia sinensis) growth, yield and nutrient uptake. Soil Water Journal Special Issue for AGRICASIA 2:653–662

    Google Scholar 

  143. 140. Çakmakçı R, Ertürk Y, Varmazyari A, Atasever A, Kotan R, Erat M, Türkyılmaz K, Sekban R, Haznedar A (2015) The effect of mixed cultures of plant growth promoting bacteria and mineral fertilizers on tea (Camellia sinensis L.) growth, yield, nutrient uptake, and enzyme activities. Inter Soil Sci Cong, 19–23 October, Sochi, Russia, pp 67–71

  144. Varmazyari A, Çakmakçı R, Ertürk Y, Atasever A (2014) Diversity and plant growth promoting properties of rhizobacteria isolated from acidic soils of tea. Inter Mezsopotamia Agric Congres, 22–25 September, Diyarbakır, Turkey, pp 49–51

  145. Çakmakçı R (2014) Mikrobiyal gübre olarak kullanılabilecek mikroorganizmaların etki mekanizmaları ve özellikleri. Soil, fertilizer and water resources Central Research Institute Publication, Turkey, pp 5–17

  146. Parlakova Karagöz F, Dursun A, Kotan R, Ekinci M, Yıldırım E, Mohammadi P (2016) Assessment of the effects of some bacterial ısolates and hormones on corm formation and some plant properties in saffron (Crocus sativus L.). JAS 22:500–511

    Google Scholar 

  147. Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    PubMed  CAS  Google Scholar 

  148. Santoro MV, Zygadlo J, Giordano W, Banchio E (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Bioch 49:1177–1182

    CAS  Google Scholar 

  149. Santoro MV, Cappellari LR, Giordano W, Banchio E (2015) Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study. Plant Biol 17:1218–1226

    PubMed  CAS  Google Scholar 

  150. Hellal FA, Mahfouz SA, Hassan FAS (2011) Partial substitution of mineral nitrogen fertilizer by bio-fertilizer on (Anethum graveolens L.) plant. ABJNA 2:652–660

    Google Scholar 

  151. Kammak FD, Dahmardeh M, Khammari I, Rahimian AR (2015) The effect of application type and composition of growth stimulating bacteria on quantitative and qualitative characteristics of medicinal plant calendula (Calendula officinallis L.). INDJSRT 8:1–9

    Google Scholar 

  152. Mahfouz SA, Sharaf Eldin MA (2007) Effect of mineral vs. biofertilizer on growth, yield, and essential oil content of fennel (Foeniculum vulgare Mill). Int Agrophys 21:361–366

    CAS  Google Scholar 

  153. Kutlu M, Çakmakçı R, Hosseinpour A, Karagöz H (2019) The use of plant growth promoting rhizobacteria (PGPR)’s effect on essential oil rate, essential oil content, some morphological parameters and nutrient uptake of Turkish oregano. Appl Ecol Env Res 17:641–1653

    Google Scholar 

  154. Banchio E, Bogino PC, Santoro M, Torres L, Zygadlo J, Giordano W (2010) Systemic induction of monoterpene biosynthesis in Origanum majoricum by soil bacteria. J Agr Food Chem 58:650–654

    CAS  Google Scholar 

  155. Arpana J, Bagyaraj DJ, Rao EVSP, Parameswaran TN, Rahiman BA (2009) Effect arbuscular mycorrhizal fungus and plant growth promoting rhizomicroorganisms on the growth, nutrition and essential oil content of patchouli (Pogostemon cablin). JMAPS 31:118–123

    Google Scholar 

  156. Ghorbanpour M, Hatami M, Kariman K, Abbaszadeh Dahaji P (2016) Phytochemical variations and enhanced efficiency of antioxidant and antimicrobial ingredients in Salvia officinalis as inoculated with different rhizobacteria. Chem Biodivers 13:319–330

    PubMed  CAS  Google Scholar 

  157. Sharafzadeh S, Sabahi A, Ordookhani K, Zare M (2013) Growth and active substances of summer savory as affected by PGPR. JNAS 2:997–1000

    Google Scholar 

  158. Cappellari LR, Santoro MV, Nievas F, Giordano W, Banchio E (2013) Increase of secondary metabolite content in marigold by inoculation promoting rhizobacteria. Appl Soil Ecol 70:16–22

    Google Scholar 

  159. Dharni S, Srivastava AK, Samad A, Patra DD (2014) Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite (monoterpenes) by rose-scented geranium (Pelargonium graveolens cv. Bourbon) grown on tannery sludge amended soil. Chemosphere 117:433–439

    PubMed  CAS  Google Scholar 

  160. Gomaa AO, Abou-Aly HE (2001) Efficiency of bioferitlization in the presence of both inorganic and organic fertilizers on growth, yield and chemical constituents of anise plant (Pimpinella anisum L.). Proc fifth Arabian Hortic Conf, Ismailia, Egypt, March 24–28. vol 11, pp 49–61

  161. Zand A, Darzi MT, Hadi MRHS (2013) Effects of phosphate solubilizing microorganisms and plant density on seed yield and essential oil content of anise (Pimpinella anisum). Middle-East J Sci Res 14:940–946

    Google Scholar 

  162. Mishra BK, Dubey PN, Aishwath OP, Kant K, Sharma YK, Vishal MK (2017) Effect of plant growth promoting rhizobacteria on coriander (Coriandrum sativum) growth and yield under semi-arid condition of India. Indian J Agric Sci 87:607–612

    CAS  Google Scholar 

  163. Ratti N, Kumar S, Verma HN, Gautam SP (2001) Improvement in bioavailability of tricalcium phosphate to Cymbopogon martinii var. motia by rhizobacteria. AMF and Azospirillum inoculation. Microbiol Res 156:145–149

    PubMed  CAS  Google Scholar 

  164. Kandeel YM, Menesy FA, Khalafalla MM, Gad WM (2004) Effect of some commercial biofertilizers on growth, seed, volatile oil yield and chemical composition of Anethum graveolens L. J Agric Res Tanta Univ 30:705–720

    Google Scholar 

  165. Shaalan MN (2005) Effect of compost and different sources of biofertilizers, on borage plants (Borago officinalis L.). Egyptian J Agric Res 83:271–284

    Google Scholar 

  166. Shaalan MN (2005) Influence of biofertilizers and chicken manure on growth, yield and seeds quality of Nigella sativa L. plants. Egyptian J Agric Res 83:811–828

    Google Scholar 

  167. Darzi MT, Ghalavand A, Rejali F, Sephidkon F (2007) Effects of biofertilizers application on yield and yield components in fennel (Foeniculum vulgare Mill.). IJMAPR 22:276–292

    Google Scholar 

  168. Moradi R, Mahallati MN, Moghaddam PR, Lakzian A, Nezhadali A (2011) The effect of application of organic and biological fertilizers on quantity and quality essential oil of Foeniculum vulgare Mill. (fennel). J Hortic Sci 25:25–33

    Google Scholar 

  169. Mishra BK, Meena KK, Dubey PN, Aishwath OP, Kant K, Sorty AM, Bitla U (2016) Influence on yield and quality of fennel (Foeniculum vulgare Mill.) grown under semi-arid saline soil, due to application of nativephosphate solubilizing rhizobacterial isolates. Ecol Eng 97:327–333

    Google Scholar 

  170. Rashmi KR, Earanna N, Vasundhara M (2008) Influence of biofertilizers on growth, biomass and biochemical constituents of Ocimum gratissimum L. Biomed J 3:123–130

    Google Scholar 

  171. Tiwari R, Kalra A, Darokar MP, Chandra M, Aggarwal N, Singh AK, Khanuja SPS (2010) Endophytic bacteria from Ocimum sanctum and their yield enhancing capabilities. Curr Microbiol 60:167–171

    PubMed  CAS  Google Scholar 

  172. Saeid Nejad AH, Rezvani Moghaddam P (2011) Evaluation of compost, vermicompost and cattle manure application on yield, yield components and essential oil percent in cumin (Cuminum cyminum). J Hortic Sci Botech 24:142–148

    Google Scholar 

  173. Mostafa A, Khalafallah M, Sedera SA, Fathy H, Higazy A (2019) Different methods of bacterial inoculation on the yield of chamomile blossoms and essential oil. Global J Environ Sci Manage 5:237–248

    CAS  Google Scholar 

  174. Bharti N, Yadav D, Barnawal D, Maji D, Kalra A, (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microb Biot 29:379–387

    CAS  Google Scholar 

  175. Cappellari LR, Santoro MV, Reinoso H, Travaglia C, Giordano W, Banchio E (2015) Anatomical, morphological, and phytochemical effects of inoculation with plant growth promoting rhizobacteria on peppermint (Mentha piperita). J Chem Ecol 41:149–158

    CAS  Google Scholar 

  176. Annamalai A, Lakshmi PTV, Lalithakumari D, Murugesan K (2004) Optimization of biofertilizers on growth, biomass and seed yield of Phyllanthus amarus (Bhumyamalaki) in sandy loam soil. J Med Arom Plant Sci 26:717–720

    Google Scholar 

  177. Vande Broek A, Lambrecht M, Eggermont K, Vanderleyden J (1999) Auxin upregulate expression of the indol-3-pyruvate decarboxylase gene in Azospirillum brasilense. J Bacteriol 181:1338–1342

    PubMed  PubMed Central  CAS  Google Scholar 

  178. Leithy S, El-Meseiry TA, Abdallah EF (2006) Effect of biofertilizer, cell stabilizer and irrigation regime on rosemary herbage oil yield and quality. TJASR 2:773–779

    Google Scholar 

  179. Hend MFS, Sakr WRA, Sabh AZ, Ragab AA (2007) Effect of some chemical and bio-fertilizers on peppermint plants grown in sandy soil: 2. Effect on essential oil production, chemical composition and anatomical features. Annals Agric Sci 52:465–484

    Google Scholar 

  180. Jha Y, Subramanian RB (2016) Rhizobacteria enhance oil content and physiological status of Hyptis suaveolens under salinity stress. Rhizosphere 1:33–35

    Google Scholar 

  181. Alraey DA, Haroun SA, Omar MN, Abd-El Gawad AM, El-Shobaky AM, Mowafy AM (2019) Fluctuation of essential oil constituents in Origanum syriacum subsp. sinaicum in response to plant growth promoting bacteria. J Essent Oil-Bear Plants 22:1022–1033

    CAS  Google Scholar 

  182. Rahmoune B, Morsli A, Khelifi-Slaoui M, Khelifi L, Strueh B, Erban A, Kopka J, Prell J, van Dongen JT (2017) Isolation and characterization of three new PGPR and their effects on the growth of Arabidopsis and Datura plants. J Plant Interact 12:1–6

    CAS  Google Scholar 

  183. Ji WX, Leng X, Jin ZX, Li H (2019) Plant growth promoting bacteria increases biomass, effective constituent, and modifies rhizosphere bacterial communities of Panax ginseng. Acta Agric Scand B 69:135–146

    CAS  Google Scholar 

  184. Youssef AA, Edris AE, Gomaa AM (2004) A comparative study between some plant growth regulators and certain growth hormones producing microorganisms on growth and essential oil composition of Salvia officinalis L. AOAS 49:299–311

    Google Scholar 

  185. Bidgoli RD, Azarnezhad N, Akhbari M, Ghorbani M (2019) Salinity stress and PGPR effects on essential oil changes in Rosmarinus officinalis L. Agric Food Secur 8:1–7

    Google Scholar 

  186. Darzi MT, Hadi MHS (2012) Effects of organic manure and nitrogen fixing bacteria on some essential oil components of coriander (Coriandrum sativum). IJACS 4:787–792

    Google Scholar 

  187. Dadaşoğlu E, Dadaşoğlu F, Varmazyari A, Kotan R, Çakmakçı R (2013) Effect of vermicompost, solid and liquid organic fertilizer and biological fertilizer applications on the growth and chlorophyll contents of mountain tea (Sideritis montana L.). Mediterr Symp Medicinal Aromatic Plants (MESMAP), Famagusta, Northern Cyprus, pp 97

  188. Lange BM, Turner GW (2013) Terpenoid biosynthesis in trichomes-current status and future opportunities. Plant Biotechnol J 11:2–22

    PubMed  CAS  Google Scholar 

  189. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1127500

    Google Scholar 

  190. Chen T, Chen Z, Ma GH, Du BH, Shen B, Ding YQ, Xu K (2014) Diversity and potential application of endophytic bacteria in ginger. Genet Mol Res 13:4918–4931

    PubMed  CAS  Google Scholar 

  191. Aswathy AJ, Jasim B, Jyothis M, Radhakrishnan EK (2012) Identification of two strains of Paenibacillus sp. as indole 3 acetic acid-producing rhizome-associated endophytic bacteria from Curcuma longa. Biotech 3:219–224

    Google Scholar 

  192. Behnoushsadat G, Masoud A, Mohsen S, Pari BM, Rahim TF (2013) Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. Aust J Crop Sci 7:338–344

    Google Scholar 

  193. Hussein KA, Joo JH (2015) Isolation and characterization of rhizomicrobial isolates for phosphate solubilization and indole acetic acid production. J Korean Soc Appl Biol Chem 58:847–855

    CAS  Google Scholar 

  194. Kumar A, Vandana SM, Singh PP, Singh SK, Singh PK, Pandey KD (2016) Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal Agric Biotechnol 8:1–7

    Google Scholar 

  195. Singh R, Arora NV (2016) Growth enhancement of medicinal plant Withania somnifera using phosphate solubilizing endophytic bacteria Pseudomonas sp. as bioinoculant. IJSTS 2:13–18

    Google Scholar 

  196. Chauhan AK, Maheshwari DK, Dheeman S, Bajpai VK (2017) Termitarium-inhabiting Bacillus spp. enhanced plant growth and bioactive component in turmeric (Curcuma longa L.). Curr Microbiol 74:184–192

    PubMed  CAS  Google Scholar 

  197. Resti Z, Reflin R, Gani S (2017) Antagonistic and plant growth promoting potentials of indigenous endophytic bacteria of shallots. IJAST 2:42–49

    Google Scholar 

  198. Sritongon K, Mongkolthanaruk W, Boonlue S, Jogloy S, Puangbut D, Riddech N (2017) Rhizobacterial candidates isolated from jerusalem artichoke (Helianthus tuberosus L.) rhizosphere for host plant growth promotion. Chiang Mai J Sci 44:83–93

    Google Scholar 

  199. Sundaram NM, Murali SR (2018) Isolation and characterization of bacteria from rhizospheric soils of Curcuma longa for different plant growth promotion (PGPR) activities. World J Pharm Res 7:692–700

    Google Scholar 

  200. Bijitha PK, Bhai RS (2019) Burkholderia cepacia strain IISRCLRB5, a promising bioagent fort he management of rhizome rot of turmeric (Curcuma longa L.). IJASR 9:1–12

    Google Scholar 

  201. Ghodsalavi B, Ahmadzadeh M, Soleimani M, Madloo PB, Taghizad-Farid R (2013) Isolation and characterization of rhizobacteria and their effects on root extracts of Valeriana officinalis. Aust J Crop Sci 7:338–344

    CAS  Google Scholar 

  202. Egamberdieva D, Li L, Lindström K, Räsänen LA (2016) A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress. Appl Microbiol Biotechnol 100:2829–2841

    PubMed  CAS  Google Scholar 

  203. Liu X, Li X, Li Y, Li R, Xie Z (2016) Plant growth promotion properties of bacterial strains isolated from the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) adapted to saline–alkaline soils and their effect on wheat growth. Can J Microbiol 63:228–327

    PubMed  Google Scholar 

  204. Kafrawi N, Zahraeni K, Baharuddin B (2017) Comparison of IAA production by shallot rhizosphere ısolated bacteria in solid and liquid media and their effect on shallot plant growth. J Microb Biochem Technol 9:266–269

    Google Scholar 

  205. Sun HF, Kong L, Du H, Chai HZ, Gao JP, Cao QF (2019) Benefits of Pseudomonas poae S61 on Astragalus mongholicus growth and bioactive compound accumulation under drought stress. J Plant Interact 14:205–212

    CAS  Google Scholar 

  206. Chauhan AK, Maheshwari DK, Kim K, Bajpai VK (2016) Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Can J Microbiol 62:880–892

    PubMed  CAS  Google Scholar 

  207. Anuroopa N, Bagyaraj DJ (2017) Selection of an efficient plant growth promoting rhizobacteria for inoculating Withania somnifera. JSIR 76:244–248

    Google Scholar 

  208. Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, Tredici SM, Talà A, Mucciarelli M, Groudeva VI, De Stefano M, Vigliotta G, Maffei ME, Alifano P (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841

    PubMed  Google Scholar 

  209. Vollú RE, Blank AF, Seldin L, Coelho MRR (2012) Molecular diversity of nitrogen-fixing bacteria associated with Chrysopogon zizanioides (L.) Roberty (vetiver), an essential oil producer plant. Plant Soil 356:101–111

    Google Scholar 

  210. Namwongsa J, Jogloy S, Vorasoot N, Boonlue S, Riddech N, Mongkolthanaruk W (2019) Endophytic bacteria improve root traits, biomass and yield of Helianthus tuberosus L. under normal and deficit water conditions. J Microbiol Biotechnol 29:1777–1789

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Çakmakçı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmakçı, R., Mosber, G., Milton, A.H. et al. The Effect of Auxin and Auxin-Producing Bacteria on the Growth, Essential Oil Yield, and Composition in Medicinal and Aromatic Plants. Curr Microbiol 77, 564–577 (2020). https://doi.org/10.1007/s00284-020-01917-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01917-4

Navigation