Skip to main content

Advertisement

Log in

Shiga Toxin-Producing and Enteroaggregative Escherichia coli in Animal, Foods, and Humans: Pathogenicity Mechanisms, Detection Methods, and Epidemiology

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The main Enterobacteriaceae habitat is the mammal gastrointestinal tract. In most cases, this group of species displays a symbiotic relationship with its hosts. However, some groups may be pathogenic to humans, such as Shiga toxin-producing Escherichia coli and enteroaggregative Escherichia coli. The presence of these groups represents a direct risk to consumers, and recent serotypes displaying the presence of pathogenic genes in both groups are a novel challenge for food production. Thus, microbiological control strategies presenting accurate detection methodologies are required. However, with the appearance of mutations among different species, knowledge, genetic monitoring, and bioinformatics techniques must be expanded. In addition, as a strategy to ensure safe products on an industrial scale, the monitoring by different techniques and fundamentals should be applied throughout the entire processing chain. Therefore, the aim of this review is to describe the pathogenesis mechanisms of different groups, mutant strain dispersion, and current and alternative epidemiological investigation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. https://doi.org/10.1038/nrmicro.2016.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santos ECCD, Castro VS, Cunha-Neto A et al (2018) Escherichia coli O26 and O113:H21 on carcasses and beef from a slaughterhouse located in Mato Grosso, Brazil. Foodborne Pathog Dis 15:653–659. https://doi.org/10.1089/fpd.2018.2431

    Article  CAS  PubMed  Google Scholar 

  3. Patzi-Vargas S, Zaidi MB, Perez-Martinez I et al (2015) Diarrheagenic Escherichia coli carrying supplementary virulence genes are an important cause of moderate to severe diarrhoeal disease in Mexico. PLoS Negl Trop Dis 9:e0003510. https://doi.org/10.1371/journal.pntd.0003510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Castro VS, Carvalho RCT, Conte-Junior CA, Figueiredo EES (2017) Shiga-toxin producing Escherichia coli: pathogenicity, supershedding, diagnostic methods, occurrence, and foodborne outbreaks. Compr Rev Food Sci Food Saf 16:1269–1280. https://doi.org/10.1111/1541-4337.12302

    Article  CAS  Google Scholar 

  5. Oporto B, Esteban JI, Aduriz G et al (2008) Escherichia coli O157:H7 and non-O157 Shiga toxin-producing E. coli in healthy cattle, sheep and swine herds in Northern Spain. Zoonoses Public Health 55:73–81. https://doi.org/10.1111/j.1863-2378.2007.01080.x

    Article  CAS  PubMed  Google Scholar 

  6. Bruyand M, Mariani-Kurkdjian P, Gouali M et al (2018) Hemolytic uremic syndrome due to Shiga toxin-producing Escherichia coli infection. Med Mal Infect 48:167–174. https://doi.org/10.1016/j.medmal.2017.09.012

    Article  CAS  PubMed  Google Scholar 

  7. Gyles CL (2007) Shiga toxin-producing Escherichia coli: an overview. J Anim Sci 85:E45–62. https://doi.org/10.2527/jas.2006-508

    Article  CAS  PubMed  Google Scholar 

  8. Jandhyala DM, Vanguri V, Boll EJ et al (2013) Shiga toxin-producing Escherichia coli O104:H4: an emerging pathogen with enhanced virulence. Infect Dis Clin North Am 27:631–649. https://doi.org/10.1016/j.idc.2013.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dudley EG, Abe C, Ghigo J-M et al (2006) An IncI1 plasmid contributes to the adherence of the atypical enteroaggregative Escherichia coli strain C1096 to cultured cells and abiotic surfaces. Infect Immun 74:2102–2114. https://doi.org/10.1128/IAI.74.4.2102-2114.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lavender HF, Jagnow JR, Clegg S (2004) Biofilm formation in vitro and virulence in vivo of mutants of Klebsiella pneumoniae. Infect Immun 72:4888–4890. https://doi.org/10.1128/IAI.72.8.4888-4890.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rasko DA, Webster DR, Sahl JW et al (2011) Origins of the E. coli strain causing an outbreak of hemolytic–uremic syndrome in Germany. N Engl J Med 365:709–717. https://doi.org/10.1056/NEJMoa1106920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beutin L, Hammerl JA, Strauch E et al (2012) Spread of a distinct Stx2-encoding phage prototype among Escherichia coli O104:H4 strains from outbreaks in Germany, Norway, and Georgia. J Virol 86:10444–10455. https://doi.org/10.1128/JVI.00986-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nyholm O, Heinikainen S, Pelkonen S et al (2015) Hybrids of shigatoxigenic and enterotoxigenic Escherichia coli (STEC/ETEC) among human and animal isolates in Finland. Zoonoses Public Health 62:518–524. https://doi.org/10.1111/zph.12177

    Article  CAS  PubMed  Google Scholar 

  14. da Silva Santos AC, Gomes Romeiro F, Yukie Sassaki L, Rodrigues J (2015) Escherichia coli from Crohn’s disease patient displays virulence features of enteroinvasive (EIEC), enterohemorragic (EHEC), and enteroaggregative (EAEC) pathotypes. Gut Pathog 7(1):2. https://doi.org/10.1186/s13099-015-0050-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rajapaksha P, Elbourne A, Gangadoo S et al (2019) A review of methods for the detection of pathogenic microorganisms. Analyst 144:396–411. https://doi.org/10.1039/C8AN01488D

    Article  CAS  PubMed  Google Scholar 

  16. Nataro JP, Kaper JB, Robins-Browne R et al (1987) Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr Infect Dis J 6:829–831

    Article  CAS  Google Scholar 

  17. Hebbelstrup Jensen B, Olsen KEP, Struve C et al (2014) Epidemiology and clinical manifestations of enteroaggregative Escherichia coli. Clin Microbiol Rev 27:614–630. https://doi.org/10.1128/CMR.00112-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Croxen MA, Law RJ, Scholz R et al (2013) Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26:822–880. https://doi.org/10.1128/CMR.00022-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201

    Article  CAS  Google Scholar 

  20. Jønsson R, Struve C, Boisen N et al (2015) Novel aggregative adherence fimbria variant of enteroaggregative Escherichia coli. Infect Immun 83:1396–1405. https://doi.org/10.1128/IAI.02820-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pereira ACM, Britto-Filho JD, José de Carvalho J et al (2008) Enteroaggregative Escherichia coli (EAEC) strains enter and survive within cultured intestinal epithelial cells. Microb Pathog 45:310–314. https://doi.org/10.1016/j.micpath.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  22. Yang S-C, Lin C-H, Aljuffali IA, Fang J-Y (2017) Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch Microbiol 199:811–825. https://doi.org/10.1007/s00203-017-1393-y

    Article  CAS  PubMed  Google Scholar 

  23. Harrington SM, Dudley EG, Nataro JP (2006) Pathogenesis of enteroaggregative Escherichia coli infection. FEMS Microbiol Lett 254:12–18. https://doi.org/10.1111/j.1574-6968.2005.00005.x

    Article  CAS  PubMed  Google Scholar 

  24. Izquierdo M, Navarro-Garcia F, Nava-Acosta R et al (2014) Identification of cell surface-exposed proteins involved in the fimbria-mediated adherence of enteroaggregative Escherichia coli to intestinal cells. Infect Immun 82:1719–1724. https://doi.org/10.1128/IAI.01651-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jønsson R, Struve C, Boll EJ et al (2017) A Novel pAA Virulence plasmid encoding toxins and two distinct variants of the fimbriae of enteroaggregative Escherichia coli. Front Microbiol 8:263. https://doi.org/10.3389/fmicb.2017.00263

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fujiyama R, Nishi J, Imuta N et al (2008) The shf gene of a Shigella flexneri homologue on the virulent plasmid pAA2 of enteroaggregative Escherichia coli 042 is required for firm biofilm formation. Curr Microbiol 56:474–480. https://doi.org/10.1007/s00284-008-9115-y

    Article  CAS  PubMed  Google Scholar 

  27. Konowalchuk J, Speirs JI, Stavric S (1977) Vero response to a cytotoxin of Escherichia coli. Infect Immun 18:775–779

    Article  CAS  Google Scholar 

  28. O’Brien AD, LaVeck GD, Thompson MR, Formal SB (1982) Production of Shigella dysenteriae type 1-like cytotoxin by Escherichia coli. J Infect Dis 146:763–769

    Article  Google Scholar 

  29. Zweifel C, Fierz L, Cernela N et al (2017) Characteristics of Shiga toxin-producing Escherichia coli O157 in slaughtered reindeer from Northern Finland. J Food Prot 80:454–458. https://doi.org/10.4315/0362-028X.JFP-16-457

    Article  CAS  PubMed  Google Scholar 

  30. Bell BP, Goldoft M, Griffin PM et al (1994) A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA 272:1349–1353

    Article  CAS  Google Scholar 

  31. Karmali MA, Gannon V, Sargeant JM (2010) Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140:360–370. https://doi.org/10.1016/j.vetmic.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  32. De Schrijver K, Buvens G, Possé B, et al (2008) Outbreak of verocytotoxin-producing E. coli O145 and O26 infections associated with the consumption of ice cream produced at a farm, Belgium, 2007. Euro Surveill 13(7):9–10

    Article  Google Scholar 

  33. Enache E, Mathusa EC, Elliott PH et al (2011) Thermal resistance parameters for Shiga toxin-producing Escherichia coli in apple juice. J Food Prot 74:1231–1237. https://doi.org/10.4315/0362-028X.JFP-10-488

    Article  CAS  PubMed  Google Scholar 

  34. Chaucheyras-Durand F, Durand H (2010) Probiotics in animal nutrition and health. Benef Microbes 1:3–9. https://doi.org/10.3920/BM2008.1002

    Article  CAS  PubMed  Google Scholar 

  35. Krause M, Barth H, Schmidt H (2018) Toxins of locus of enterocyte effacement-negative shiga toxin-producing Escherichia coli. Toxins. https://doi.org/10.3390/toxins10060241

    Article  PubMed  PubMed Central  Google Scholar 

  36. Javadi M, Bouzari S, Oloomi M (2017) Horizontal gene transfer and the diversity of Escherichia coli. Recent Adv Physiol Pathog Biotechnol Appl. https://doi.org/10.5772/intechopen.68307

    Article  Google Scholar 

  37. Worrall LJ, Bergeron JRC, Strynadka NCJ (2013) Chapter 14: type 3 secretion systems. In: Donnenberg MS (ed) Escherichia coli, 2nd edn. Academic Press, Boston, pp 417–450

    Chapter  Google Scholar 

  38. Steyert SR, Sahl JW, Fraser CM et al (2012) Comparative genomics and stx phage characterization of LEE-negative shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol 2:133. https://doi.org/10.3389/fcimb.2012.00133

    Article  PubMed  PubMed Central  Google Scholar 

  39. Buchholz U, Bernard H, Werber D et al (2011) German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med 365:1763–1770. https://doi.org/10.1056/NEJMoa1106482

    Article  CAS  PubMed  Google Scholar 

  40. Bielaszewska M, Mellmann A, Zhang W, et al (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11:671–676. https://doi.org/10.1016/S1473-3099

    Article  CAS  PubMed  Google Scholar 

  41. Hamm K, Barth SA, Stalb S et al (2016) Experimental Infection of Calves with Escherichia coli O104:H4 outbreak strain. Sci Rep 6:32812. https://doi.org/10.1038/srep32812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Navarro-Garcia F (2014) Escherichia coli O104:H4 pathogenesis: an enteroaggregative E. coli/Shiga Toxin-Producing E. coli explosive cocktail of high virulence. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.EHEC-0008-2013

    Article  PubMed  Google Scholar 

  43. Prager R, Lang C, Aurass P et al (2014) Two novel EHEC/EAEC hybrid strains isolated from human infections. PLoS ONE 9:e95379. https://doi.org/10.1371/journal.pone.0095379

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim J, Oh K, Jeon S et al (2011) Escherichia coli O104:H4 from 2011 European outbreak and strain from South Korea. Emerg Infect Dis 17:1755–1756. https://doi.org/10.3201/eid1708.110879

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mora A, Herrrera A, López C et al (2011) Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain. Int Microbiol 14:121–141. https://doi.org/10.2436/20.1501.01.142

    Article  CAS  PubMed  Google Scholar 

  46. Ferdous M, Zhou K, de Boer RF, et al (2015) Comprehensive characterization of Escherichia coli O104:H4 isolated from patients in the Netherlands. Front Microbiol 6:1348. https://doi.org/10.3389/fmicb.2015.01348

    Article  PubMed  PubMed Central  Google Scholar 

  47. Carbonari CC, Deza N, Flores M et al (2014) First isolation of enteroaggregative Escherichia coli O104:H4 from a diarrhea case in Argentina. Rev Argent Microbiol 46:302–306. https://doi.org/10.1016/S0325-7541(14)70086-0

    Article  PubMed  Google Scholar 

  48. Dallman TJ, Chattaway MA, Cowley LA et al (2014) An investigation of the diversity of strains of enteroaggregative Escherichia coli isolated from cases associated with a large multi-pathogen foodborne outbreak in the UK. PLoS ONE 9:e98103. https://doi.org/10.1371/journal.pone.0098103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iyoda S, Tamura K, Itoh K et al (2000) Inducible stx2 phages are lysogenized in the enteroaggregative and other phenotypic Escherichia coli O86:HNM isolated from patients. FEMS Microbiol Lett 191:7–10. https://doi.org/10.1111/j.1574-6968.2000.tb09311.x

    Article  CAS  PubMed  Google Scholar 

  50. Shridhar PB, Noll LW, Shi X et al (2016) Escherichia coli O104 in feedlot cattle feces: prevalence Isolation and Characterization. PLoS ONE 11:e0152101. https://doi.org/10.1371/journal.pone.0152101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karmali MA (2018) Factors in the emergence of serious human infections associated with highly pathogenic strains of shiga toxin-producing Escherichia coli. Int J Med Microbiol 308:1067–1072. https://doi.org/10.1016/j.ijmm.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  52. Doyle MP, Erickson MC (2006) Reducing the carriage of foodborne pathogens in livestock and poultry. Poult Sci 85:960–973. https://doi.org/10.1093/ps/85.6.960

    Article  CAS  PubMed  Google Scholar 

  53. Lenski RE, Wiser MJ, Ribeck N et al (2015) Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli. Proc Biol Sci 282:20152292. https://doi.org/10.1098/rspb.2015.2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aslani MM, Alikhani MY, Zavari A et al (2011) Characterization of enteroaggregative Escherichia coli (EAEC) clinical isolates and their antibiotic resistance pattern. Int J Infect Dis 15:e136–139. https://doi.org/10.1016/j.ijid.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  55. Weintraub A (2007) Enteroaggregative Escherichia coli: epidemiology, virulence and detection. J Med Microbiol 56:4–8. https://doi.org/10.1099/jmm.0.46930-0

    Article  CAS  PubMed  Google Scholar 

  56. Conrad CC, Stanford K, McAllister TA et al (2017) Competition during enrichment of pathogenic Escherichia coli may result in culture bias. FACETS 1:114–126. https://doi.org/10.1139/facets-2016-0007

    Article  Google Scholar 

  57. Feng PCH, Jinneman K, Scheutz F, Monday SR (2011) Specificity of PCR and serological assays in the detection of Escherichia coli Shiga toxin subtypes. Appl Environ Microbiol 77:6699–6702. https://doi.org/10.1128/AEM.00370-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. EFSA (2008) Report from the Task Force on Zoonoses Data Collection including guidance for harmonized monitoring and reporting of antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. from food animals. EFSA J 6:141r. https://doi.org/10.2903/j.efsa.2008.141r

    Article  Google Scholar 

  59. ISO (2012) ISO/TS‐13136:2012: microbiology of food and animal feed. real‐time polymerase chain reaction (PCR)—based method for the detection of food‐borne pathogens. Horizontal method for the detection of shiga toxin‐producing Escherichia coli (STEC) and the determination of O157, O111, O26, O103 and O145 serogroups. Geneva, Switzerland: International Organization for Standardization.

  60. EFSA Panel on Biological Hazards (2015) Scientific opinion on public health risks associated with enteroaggregative Escherichia coli (EAEC) as a food-borne pathogen. EFSA J 13(12):4330. https://doi.org/10.2903/j.efsa.2015.4330

    Article  CAS  Google Scholar 

  61. Mellmann A, Harmsen D, Cummings CA et al (2011) Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS ONE 6:e22751. https://doi.org/10.1371/journal.pone.0022751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brzuszkiewicz E, Thürmer A, Schuldes J et al (2011) Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: entero-aggregative-haemorrhagic Escherichia coli (EAHEC). Arch Microbiol 193:883–891. https://doi.org/10.1007/s00203-011-0725-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Parizad EG, Parizad EG, Valizadeh A (2016) The application of pulsed field gel electrophoresis in clinical studies. J Clin Diagn Res 10:DE01–DE04. https://doi.org/10.7860/JCDR/2016/15718.7043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Herschleb J, Ananiev G, Schwartz DC (2007) Pulsed-field gel electrophoresis. Nat Protoc 2:677–684. https://doi.org/10.1038/nprot.2007.94

    Article  CAS  PubMed  Google Scholar 

  65. Belén A, Pavón I, Maiden MCJ (2009) Multilocus sequence typing. Methods Mol Biol Clifton NJ 551:129–140. https://doi.org/10.1007/978-1-60327-999-4_11

    Article  CAS  Google Scholar 

  66. Dallman TJ, Chattaway MA, Cowley LA et al (2014) An investigation of the diversity of trains of enteroaggregative Escherichia coli isolated from cases associated with a large multi-pathogen foodborne outbreak in the UK. PLoS ONE 9(5):e98103. https://doi.org/10.1371/journal.pone.0098103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tozzoli R, Grande L, Michelacci V et al (2014) Shiga toxin-converting phages and the emergence of new pathogenic Escherichia coli: a world in motion. Front Cell Infect Microbiol 4:80. https://doi.org/10.3389/fcimb.2014.00080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pasquali F, Palma TF et al (2019) Whole genome sequencing based typing and characterisation of Shiga-toxin producing Escherichia coli strains belonging to O157 and O26 serotypes and isolated in dairy farms. Italian J Food Safety 7(4):7673. https://doi.org/10.4081/ijfs.2018.7673

    Article  CAS  Google Scholar 

  69. Jenkins C (2018) Enteroaggregative Escherichia coli. Curr Top Microbiol Immunol 416:27–50. https://doi.org/10.1007/82_2018_105

    Article  CAS  PubMed  Google Scholar 

  70. Toro M, Cao G, Rump L, Nagaraja TG, Meng J, Gonzalez-Escalona N (2015) Genome sequences of 64 non-O157:H7 Shiga toxin-producing Escherichia coli strains. Genome Announc 3:e01067–e1115. https://doi.org/10.1128/genomeA.01067-15]

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ashton PM, Perry N, Ellis R, Petrovska L, Wain J, Grant KA, Jenkins C, Dallman TJ (2015) Insight into Shiga toxin genes encoded by Escherichia coli O157 from whole genome sequencing. Peer J 3:e739. https://doi.org/10.7717/peerj.739

    Article  CAS  PubMed  Google Scholar 

  72. Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC et al (2012) Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proc Natl Acad Sci USA 109:3065–3070. https://doi.org/10.1073/pnas.1121491109

    Article  PubMed  Google Scholar 

  73. Roetzer A, Diel R, Kohl TA et al (2013) whole genome sequencing versus traditional genotyping for investigation of a mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 10:e1001387. https://doi.org/10.1371/journal.pmed.1001387

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Process: 310462/2018-5 and 311422/2016-0) and author Vinicius Castro thanks CNPq/Brazil for the PhD scholarship granted. Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ (Grant Number E-26/203.049/2017 and E-26/201.859/2019) and author Ana Paletta thanks FAPERJ/Brazil for the scholarship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Conte-Junior.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paletta, A.C.C., Castro, V.S. & Conte-Junior, C.A. Shiga Toxin-Producing and Enteroaggregative Escherichia coli in Animal, Foods, and Humans: Pathogenicity Mechanisms, Detection Methods, and Epidemiology. Curr Microbiol 77, 612–620 (2020). https://doi.org/10.1007/s00284-019-01842-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-019-01842-1

Navigation