Skip to main content

Advertisement

Log in

Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Indigenous bacterial strain Pseudomonas balearica SAE1, tolerant to e-waste toxicity was isolated from an e-waste recycling facility Exigo Recycling Pvt. Ltd., India. Toxicity tolerance of bacterial strain was analyzed using crushed (particle size ≤150 µm) waste computer printed circuit boards (PCBs)/liter (L) of culture medium. The EC50 value for SAE1 was 325.7 g/L of the e-waste pulp density. Two-step bioleaching was then applied to achieve the dissolution of gold (Au) and silver (Ag) from the e-waste. To maximize precious metal dissolution, factors including pulp density, glycine concentration, pH level, and temperature were optimized. The optimization resulted in 68.5 and 33.8% of Au and Ag dissolution, respectively, at a pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C, and a glycine concentration of 5 g/L. This is the first study of Au and Ag bioleaching using indigenous e-waste bacteria and its analysis to determine e-waste toxicity tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amiri F, Mousavi S, Yaghmaei S, Barati M (2012) Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochem Eng J 67:208–217

    Article  CAS  Google Scholar 

  2. Arshadi M, Mousavi S (2015) Enhancement of simultaneous gold and copper extraction from computer printed circuit boards using Bacillus megaterium. Bioresour Technol 175:315–324

    Article  CAS  PubMed  Google Scholar 

  3. Baldé C, Wang F, Kuehr R, Huisman J (2015) The global e-waste monitor-2014; United Nations University, IAS–SCYCLE: Bonn

    Google Scholar 

  4. Bizzo WA, Figueiredo RA, de Andrade VF (2014) Characterization of printed circuit boards for metal and energy recovery after milling and mechanical separation. Materials 7(6):4555–4566

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59(2):319–326

    Article  CAS  Google Scholar 

  6. Brandl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94(1):14–17

    Article  CAS  Google Scholar 

  7. Cayumil R, Khanna R, Rajarao R, Mukherjee P, Sahajwalla V (2016) Concentration of precious metals during their recovery from electronic waste. Waste Manage 57:121–130

    Article  CAS  Google Scholar 

  8. Chen B-Y, Liu H-L, Chen Y-W, Cheng Y-C (2004) Dose–response assessment of metal toxicity upon indigenous Thiobacillus thiooxidans BC1. Process Biochem 39(6):737–748

    Article  Google Scholar 

  9. Chi TD, Lee J-c, Pandey B, Yoo K, Jeong J (2011) Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner Eng 24(11):1219–1222

    Article  CAS  Google Scholar 

  10. Clinical Laboratory Standards Institute (2013) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard—Fourth Edition. VET01-A4. Wayne: CLSI

    Google Scholar 

  11. Cossu R, Williams ID (2015) Urban mining: concepts, terminology, challenges. Waste Manag 45:1–3. doi:10.1016/j.wasman.2015.09.040

    Article  PubMed  Google Scholar 

  12. Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158(2):228–256

    Article  CAS  PubMed  Google Scholar 

  13. Faramarzi MA, Stagars M, Pensini E, Krebs W, Brandl H (2004) Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113(1):321–326

    Article  CAS  PubMed  Google Scholar 

  14. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  15. Fonti V, Dell’Anno A, Beolchini F (2016) Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments? Sci Total Environ 563:302–319

    Article  PubMed  Google Scholar 

  16. Hagelüken C (2006) Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. Erzmetall 59:152–161

    Google Scholar 

  17. Hassanien WAG, DESOUKY OAN, Hussien SSE (2013) Bioleaching of some rare earth elements from Egyptian monazite using Aspergillus ficuum and Pseudomonas aeruginosa. Walailak J Sci Technol 11(9):809–823

    Google Scholar 

  18. Hernandez J, Patino F, Rivera I, Reyes IA, Flores MU, Juarez JC, Reyes M (2014) Leaching kinetics in cyanide media of Ag contained in the industrial mining-metallurgical wastes in the state of Hidalgo, Mexico. Inter J Min Sci Technol 24(5):689–694

    Article  CAS  Google Scholar 

  19. Ilyas S, Anwar MA, Niazi SB, Ghauri MA (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88(1):180–188

    Article  CAS  Google Scholar 

  20. Ilyas S, Ruan C, Bhatti H, Ghauri M, Anwar M (2010) Column bioleaching of metals from electronic scrap. Hydrometallurgy 101(3):135–140

    Article  CAS  Google Scholar 

  21. Işıldar A, van de Vossenberg J, Rene ER, van Hullebusch ED, Lens PN (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manage 57:149–157

    Article  Google Scholar 

  22. Kaya M (2016) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manage 57:64–90

    Article  CAS  Google Scholar 

  23. Khanna R, Cayumil R, Mukherjee P, Sahajwalla V (2014) A novel recycling approach for transforming waste printed circuit boards into a material resource. Procedia Environ Sci 21:42–54

    Article  CAS  Google Scholar 

  24. Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42

    Article  Google Scholar 

  25. Li JL, Liu XY, Xie JT, Di YL, Zhu FX (2015) A comparison of different estimation methods for fungicide EC50 and EC95 values. J Phytopathol 163(4):239–244

    Article  CAS  Google Scholar 

  26. Liang CJ, Li JY, Ma CJ (2014) Review on cyanogenic bacteria for gold recovery from E-Waste. Adv Mater Res 878:355–367

    Article  Google Scholar 

  27. Liang G, Mo Y, Zhou Q (2010) Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles. Enzyme Microb Technol 47(7):322–326

    Article  CAS  Google Scholar 

  28. Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O’gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep 2(3):403–411

    Article  CAS  PubMed  Google Scholar 

  29. Natarajan G, Ting Y-P (2014) Pretreatment of e-waste and mutation of alkali-tolerant cyanogenic bacteria promote gold biorecovery. Bioresour Technol 152:80–85

    Article  CAS  PubMed  Google Scholar 

  30. Natarajan G, Ting Y-P (2015) Gold biorecovery from e-waste: an improved strategy through spent medium leaching with pH modification. Chemosphere 136:232–238

    Article  CAS  PubMed  Google Scholar 

  31. Pathak A, Morrison L, Healy MG (2017) Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: a critical review. Bioresour Technol

  32. Pradhan JK, Kumar S (2012) Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manage Res 30(11):1151–1159

    Article  Google Scholar 

  33. Pradhan JK, Kumar S (2014) Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India. Environ Sci Pollut Res 21(13):7913–7928

    Article  CAS  Google Scholar 

  34. Priya A, Hait S (2017) Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Environ Sci Pollut Res 24(8):6989–7008

    Article  CAS  Google Scholar 

  35. Rozas EE, Mendes MA, Nascimento CA, Espinosa DC, Oliveira R, Oliveira G, Custodio MR (2017) Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera). J Hazard Mat 329:120–130

    Article  CAS  Google Scholar 

  36. Ruan J, Zhu X, Qian Y, Hu J (2014) A new strain for recovering precious metals from waste printed circuit boards. Waste Manage 34(5):901–907

    Article  CAS  Google Scholar 

  37. Sahni A, Kumar A, Kumar S (2016) Chemo-biohydrometallurgy—a hybrid technology to recover metals from obsolete mobile SIM cards. Environ Nanotechnol Monit Manage 6:130–133

    Article  Google Scholar 

  38. Shin D, Jeong J, Lee S, Pandey B, Lee J-c (2013) Evaluation of bioleaching factors on gold recovery from ore by cyanide-producing bacteria. Miner Eng 48:20–24

    Article  CAS  Google Scholar 

  39. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tuncuk A, Stazi V, Akcil A, Yazici EY, Deveci H (2012) Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Miner Eng 25(1):28–37

    Article  CAS  Google Scholar 

  41. Xiang Y, Wu P, Zhu N, Zhang T, Liu W, Wu J, Li P (2010) Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184(1):812–818

    Article  CAS  PubMed  Google Scholar 

  42. Yazici E, Deveci H (2014) Ferric sulphate leaching of metals from waste printed circuit boards. Int J Miner Process 133:39–45

    Article  CAS  Google Scholar 

  43. Zoidakis J, Loaiza A, Vu K, Abu-Omar MM (2005) Effect of temperature, pH, and metals on the stability and activity of phenylalanine hydroxylase from Chromobacterium violaceum. J Inorg Biochem 99(3):771–775

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DBT (Department of Biotechnology, Ministry of Science & Technology, Govt. of India, Sanction Order No. BT/PR7478/BCE/8/951/2013) for providing financial support. We are also thankful to Exigo Recycling Pvt. Ltd. for gifting e-waste.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Kumar.

Ethics declarations

Conflict of interest

Author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Saini, H.S. & Kumar, S. Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility. Curr Microbiol 75, 194–201 (2018). https://doi.org/10.1007/s00284-017-1365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1365-0

Keywords

Navigation