Skip to main content
Log in

Dietary Proteins Rapidly Altered the Microbial Composition in Rat Caecum

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Dietary proteins can alter gut microbial diversity. However, little is known about how gut bacteria respond to dietary proteins during short-term feeding. In the present study, PCR-DGGE analysis was performed to compare changes in gut microbial composition in rat caecum after rats were fed proteins from soy, pork, beef, chicken, fish and casein (control) for 2, 7 and 14 days. On day 2, differences were observed in microbial composition between groups of red meat (pork and beef) and white meat (chicken and fish) proteins. For a certain diet group, microbial composition showed a great change with feeding time. Principle component analysis indicated that the soy protein group showed a good separation in microbial composition from the casein and meat protein groups on days 7 and 14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alou MT, Lagier J, Raoult D (2016) Diet influence on the gut microbiota and dysbiosis related to nutritional disorders. Hum Microbiome 1:3–11

    Article  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bäckhed F (2013) Meat-metabolizing bacteria in atherosclerosis. Nat Med 19(5):533–534

    Article  PubMed  Google Scholar 

  4. Biesalski HK (2005) Meat as a component of a healthy diet-are there any risks or benefits if meat is avoided in the diet? Meat Sci 70(3):509–524

    Article  PubMed  Google Scholar 

  5. Collins KH, Paul HA, Hart DA et al (2016) A high-fat high-sucrose diet rapidly alters muscle integrity, inflammation and gut microbiota in male rats. Sci Rep 6:37278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cox AJ, West NP, Cripps AW (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3(3):207–215

    Article  CAS  PubMed  Google Scholar 

  7. David LA, Maurice CF, Carmody RN et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563

    Article  CAS  PubMed  Google Scholar 

  8. Eppinga H, Fuhler GM, Peppelenbosch MP, Hecht GA (2016) Gut microbiota developments with emphasis on inflammatory bowel disease: report from the gut microbiota for health world summit 2016. Gastroenterology 151(2):e1–e4

    Article  PubMed  Google Scholar 

  9. Islam KB, Fukiya S, Hagio M et al (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–1781

    Article  CAS  PubMed  Google Scholar 

  10. Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nübel U, Engelen B, Felske A et al (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    Article  PubMed  PubMed Central  Google Scholar 

  13. Portune KJ, Beaumont M, Davila A, Tomé D, Blachier F, Sanz Y (2016) Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. Trends Food Sci Technol 57:213–232

    Article  CAS  Google Scholar 

  14. Reeves PG, Nielsen FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951

    CAS  PubMed  Google Scholar 

  15. Sheffield VC, Beck JS, Stone EM, Myers RM (1989) Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci USA 86:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14

  17. Usshera JR, Lopaschuk GD, Arduini A (2016) Gut microbiota metabolism of l-carnitine and cardiovascular risk. Atherosclerosis 231(2):456–461

    Article  Google Scholar 

  18. Voreades N, Kozil A, Weir TL (2014) Diet and the development of the human intestinal microbiome. Front Microbiol 5:494

    Article  PubMed  PubMed Central  Google Scholar 

  19. Willianms P (2007) Nutritional composition of red meat. Nutr Diet 64 (Suppl. s4):S113–S119

  20. Zhao L (2013) The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11(9):639

    Article  CAS  PubMed  Google Scholar 

  21. Zhu Y, Lin X, Zhao F et al (2015) Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci Rep 5:15220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zoetendal EG, Booijink C, Klaassens ES et al (2006) Isolation of DNA from bacterial samples of the human gastrointestinal tract. Nat Protoc 1(2):870–873

    Article  CAS  PubMed  Google Scholar 

  23. Zhu Y, Lin X, Li H et al (2016) Intake of meat proteins substantially increased the relative abundance of genus Lactobacillus in rat feces. PLoS ONE 11(4):e0152678

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks were extended to Dr. Yuxiang Yang from Nanjing Agricultural University for his kind help during the experiment.

Funding

This work was funded by the National Natural Science Foundation of China [31471600].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbao Li.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest regarding this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary File 1

The DGGE gels of 190 samples from six dietary groups at day 0, day 2, day 7 and day 14 (n = 10 in each group) (RAR 5565 kb)

Supplementary File 2

The band frequency (number of sample existed the band) of six dietary groups at day 0, day 2, day 7 and day 14. (n = 10 in each group) (XLS 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Huang, Z., Zhou, G. et al. Dietary Proteins Rapidly Altered the Microbial Composition in Rat Caecum. Curr Microbiol 74, 1447–1452 (2017). https://doi.org/10.1007/s00284-017-1339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1339-2

Navigation