Skip to main content
Log in

Comparative Transcriptome Sequence Analysis of Sporulation-Related Genes of Aspergillus cristatus in Response to Low and High Osmolarity

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Aspergillus cristatus undergoes sexual and asexual development under conditions of low and high osmotic pressure, respectively. In this study, the expression levels of 107 genes associated with sexual and asexual development were analysed under conditions of low and high osmotic pressure by RNA sequencing. The results showed that 37 genes were up-regulated and other genes were down-regulated under conditions of high osmotic pressure, with most of the up-regulated genes associated with asexual development and most down-regulated genes associated with sexual development. These results suggest that osmotic pressure regulated sexual and asexual development of A. cristatus by controlling the expression levels of key genes. Meanwhile, there were differences in the expression levels of key genes associated with the regulation of sexual and asexual development between A. cristatus and Aspergillus nidulans. Moreover, we verified the reliability of the results by quantitative real-time polymerase chain reaction analysis of some key genes. In this study, the relationship between sporulation-related genes and osmotic pressure at the transcriptome level were analysed, which indicated that A. cristatus was a useful model organism for the study of osmotic pressure regulation on sexual and asexual development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Article  Google Scholar 

  3. Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15(20):1833–1838

    Article  CAS  PubMed  Google Scholar 

  4. Busch S, Eckert SE, Krappmann S, Braus GH (2003) The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol Microbiol 49:717–730

    Article  CAS  PubMed  Google Scholar 

  5. Busch S, Schwier EU, Nahlik K, Bayram O, Helmstaedt K, Draht OW, Krappmann S, Valerius O, Lipscomb WN, Braus GH (2007) An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. P Natl Acad Sci USA 104:8089–8094

    Article  CAS  Google Scholar 

  6. Dyer PS, Paoletti M, Archer DB (2003) Genomics reveals sexual secrets of Aspergillus. Microbiology 149:2301–2303

    Article  CAS  PubMed  Google Scholar 

  7. Dyer PS, O’Gorman CM (2012) Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev 36:165–192

    Article  CAS  PubMed  Google Scholar 

  8. Etxebeste O, Garzia A, Eduardo A, Espeso EA, Ugalde U (2008) Aspergillus nidulans asexual development: making the most of cellular modules. Trends Microbiol 18(12):569–576

    Article  Google Scholar 

  9. Ge YY, Wang YC, Liu YX, Tan YM, Ren XX, Zhang XY, Kevin H, Liu YF, Liu ZY (2016) Comparative genomic and transcriptomic analyses of the Fuzhuan brick tea fermentation fungus Aspergillus cristatus. BMC Genom 17:428–440

    Article  Google Scholar 

  10. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kawasaki L, Sánchez O, Shiozaki K, Aguirre J (2002) SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 45(2):1153–1163

    Article  CAS  PubMed  Google Scholar 

  12. Kim HR, Chae KS, Han KH, Han DM (2009) The nsdC gene encoding a putative C2H2-type transcription factor is a key activator of sexual development in Aspergillus nidulans. Genetics 182:771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krijgsheld P, Bleichrodt R, Veluw GJV, Wang F, Müller WH, Dijksterhuis J, Wösten HAB (2012) Development in Aspergillus. Stud Mycol 74:1–29

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kuger M, Fischer R (1998) Integrity of a Zn finger-like domain in SamB is crucial for morphogenesis in ascomycetous fungi. EMBO J 17:204–214

    Article  Google Scholar 

  15. Lee BN, Adams TH (1994) The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 8:641–651

    Article  CAS  PubMed  Google Scholar 

  16. Lee SC, Ni M, Li WJ, Shertz C, Heitman J (2010) The Evolution of sex: a Perspective from the fungal kingdom. Microbiol Mol Biol Rev 74(2):298–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu ZY, Qing J, Li NL (1991) Study of conditions of sporogenesis of Aspergillus chevalieri var. intermedius in Fu Zhuan Tea. Southwest China J Agric Sci 4:73–77

    Google Scholar 

  18. Paoletti M, Seymour F, Alcocer M, Kaur N, Calvo A, Archer D, Dyer P (2007) Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr Biol 17:1384–1389

    Article  CAS  PubMed  Google Scholar 

  19. Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15:669–677

    Article  CAS  PubMed  Google Scholar 

  20. Purschwitz J, Muller S, Kastner C, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue-and red-light sensors in Aspergillus nidulans. Curr Biol 18(4):255–259

    Article  CAS  PubMed  Google Scholar 

  21. Rojas FL, Sánchez O, Kawasaki L, Aguirre J (2011) Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 80(2):436–454

    Article  Google Scholar 

  22. Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  24. Tan YM, Wang YP, Ge YY, Ren XX, Wang YC, Liu ZY (2016) Isolation and molecular identification of Aspergillus cristatus in fermented“fuzhuan” brick tea from Guizhou Province. Mycosystema 35(10):1–10

    Google Scholar 

  25. Trapnell C, Pachter L, Salzberg SL (2009) Tophat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei H, Requena N, Fischer R (2003) The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol Microbiol 47:1577–1588

    Article  CAS  PubMed  Google Scholar 

  27. Yu ZZ, Armant O, Fischer R (2016) Fungi use the SakA (HogA) pathway for phytochrome-dependent light signaling. Nat Microbiol. doi:10.1038/nmicrobiol.2016.19

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation Program of PR China (NSFC31660021); Special Grants from Guizhou Academy of Agriculture Science (GAAS-SP-2014/004); Guizhou Province Fund for Application Basic Research (GSTD-LH-[2015]-7683). We thank Dr. Jiankui Liu and Dr. Sajeewa S. N. Maharachchikumbura for helping with the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoyi Liu.

Ethics declarations

Conflict of interest

All authors declare that we have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Yu, F., Tan, Y. et al. Comparative Transcriptome Sequence Analysis of Sporulation-Related Genes of Aspergillus cristatus in Response to Low and High Osmolarity. Curr Microbiol 74, 806–814 (2017). https://doi.org/10.1007/s00284-017-1250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-017-1250-x

Keywords

Navigation