Skip to main content
Log in

Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, a bacterial strain of Achromobacter sp. LZ35, which was capable of utilizing 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxy acetic acid (MCPA) as the sole sources of carbon and energy for growth, was isolated from the soil in a disused pesticide factory in Suzhou, China. The optimal 2,4-D degradation by strain LZ35 occurred at 30 °C and pH 8.0 when the initial 2,4-D concentration was 200 mg L−1. Strain LZ35 harbored the conserved 2,4-D/alpha-ketoglutarate dioxygenase (96%) and 2,4-dichlorophenol hydroxylase (99%), and catabolized 2,4-D via the intermediate 2,4-dichlorophenol. The inoculation of 7.8 × 106 CFU g−1 soil of strain LZ35 cells to 2,4-D-contaminated soil could efficiently remove over 75 and 90% of 100 and 50 mg L−1 2,4-D in 12 days and significantly released the phytotoxicity of maize caused by the 2,4-D residue. This is the first report of an Achromobacter sp. strain that was capable of mineralizing both 2,4-D and MCPA. This study provides us a promising candidate for its application in the bioremediation of 2,4-D- or MCPA-contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bell GR (1957) Some morphological and biochemical characteristics of a soil bacterium which decomposes 2, 4-dichlorophenoxy acetic acid. Can J Microbiol 3:821–840

    Article  CAS  PubMed  Google Scholar 

  2. Biederbeck VO, Campbell CA, Smith AE (1987) Effect of long-term 2,4-D field applications on soil biochemical processed. J Environ Qual 16:257–262

    Article  CAS  Google Scholar 

  3. Bortolozzi AA, Evangelista-de-Duffard AM, Duffard RO, Antonelli MC (2004) Effects of 2,4-dichlorophenoxyacetic acid exposure on dopamine D2-like receptors in rat brain. Neurotoxicol Teratol 26:599–605

    Article  CAS  PubMed  Google Scholar 

  4. Cardoso LP, Valim JB (2006) Study of acids herbicides removal by calcined Mg–Al–CO3–LDH. J Phys Chem Solids 67:987–993

    Article  CAS  Google Scholar 

  5. Chang YC, Reddy MV, Umemoto H, Sato Y, Kang MH, Yajima Y, Kikuchi S (2015) Bio-augmentation of Cupriavidus sp. CY-1 into 2,4-D contaminated soil: microbial community analysis by culture dependent and independent techniques. PLoS ONE. doi:10.1371/journal.pone.0145057

    Google Scholar 

  6. Charles JM, Hanley TR Jr, Wilson RD, van Ravenzwaay B, Bus JS (2001) Development toxicity studies in rats and rabbits on 2,4-dichlorophenoxyacetic acid and its forms. Toxicol Sci 60:121–131

    Article  CAS  PubMed  Google Scholar 

  7. Cheney MA, Fiorillo R, Criddle RS (1997) Herbicide and estrogen effects on the metabolic activity of Elliptio complanata measured by calorespirometry. Comp Biochem Physiol 118:159–164

    CAS  Google Scholar 

  8. Chinalia FA, Regali-Seleghin MH, Correa EM (2007) 2,4-D toxicity: cause, effect and control. Terrest Aqua Environ Toxicol 1:24–33

    Google Scholar 

  9. Christensen TH, Kjeldsen P, Albrechtsen HJ, Heron G, Nielsen PH, Bjerg PL, Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Crit Rev Environ Sci Technol 24:119–202

    Article  CAS  Google Scholar 

  10. Cho YS, Kahng HY, Kim CK, Kukor JJ, Oh KH (2002) Physiological and cellular response of the 2,4-D degrading bacterium, Burkholderia cepacia YK-2, to the phenoxyherbicides 2,4-D and 2,4,5-T. Curr Microbiol 45:415–422

    Article  CAS  PubMed  Google Scholar 

  11. Crowley DE, Brennerova MV, Irwin C, Brenner V, Focht DD (1996) Rhizosphere effects on biodegradation of 2,5-dichlorobenzoate by a bioluminescent strain of root-colonizing Pseudomonas fluorescens. FEMS Microbiol Ecol 20:79–89

    Article  CAS  Google Scholar 

  12. Daane LL, Haggblom MM (1999) Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Appl Environ Microbiol 65:2376–2381

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai Y, Li NN, Zhao Q, Xie SG (2015) Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation 26:161–170

    Article  CAS  PubMed  Google Scholar 

  14. Dejonghe W, Goris J, El Fantroussi S, Höfte M, De Vos P, Verstraete W, Top EM (2000) Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 66:3297–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134 (pJP4). J Bacteriol 161:85–90

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Duffard R, Garcia G, Rosso S, Bortolozzi A, Madariaga M, di Paolo O, Evangelista de Duffard AM (1996) Central nervous system myelin deficit in rats exposed to 2,4-dichlorophenoxyacetic acid throughout lactation. Neurotoxicol Teratol 18:691–696

    Article  CAS  PubMed  Google Scholar 

  18. Evangelista-de-Duffard AM, Bortolozzi A, Duffard RO (1995) Altered behavioural responses in 2,4-dichlorophenoxyacetic acid treated and amphetamine challenged rats. Neurotoxicology 16:3479–3484

    Google Scholar 

  19. Evans WC, Smith BSW, Fernley HN, Davies JI (1971) Bacterial metabolism of 2, 4-dichlorophenoxyacetate. Biochem J 122:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El Fantroussi S, Belkacemi M, Top EM, Mahillon J, Naveau H, Agathos SN (1999) Bioaugmentation of a soil bioreactor designed for pilot-scale anaerobic bioremediation studies. Environ Sci Technol 33:2992–3001

    Article  Google Scholar 

  21. Foster RK, Mckercher RB (1973) Laboratory incubation studies of chlorophenoxyacetic acids in chernozemic soils. Soil Biol Biochem 5:333–337

    Article  CAS  Google Scholar 

  22. Gayathri D, Shobha KJ (2015) 2,4-Dichlorobiphenyl, a congener of polychlorinated biphenyl degradation by Pseudomonas sp. GSa and GSb. Ind J Exp Biol 53:536–542

    CAS  Google Scholar 

  23. Gintautas PA, Daniel SR, Macalady DL (1992) Phenoxyalkanoic acid herbicides in municipal landfill leachates. Environ Sci Technol 26:517–521

    Article  CAS  Google Scholar 

  24. Gonzalez AJ, Gallego A, Gemini VL, Papalia M, Radice M, Gutkind G, Planes E, Korol SE (2012) Degradation and detoxification of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by an indigenous Delftia sp. strain in batch and continuous systems. Int Biodeterior Biodegrad 66:8–13

    Article  CAS  Google Scholar 

  25. Guo QW, Wan R, Xie SG (2014) Simazine degradation in bioaugmented soil: urea impact and response of ammoniaoxidizing bacteria and other soil bacterial communities. Environ Sci Pollut Res 21:337–343

    Article  CAS  Google Scholar 

  26. Han LZ, Zhao DG, Li CC (2015) Isolation and 2,4-D-degrading characteristics of Cupriavidus campinensis BJ71. Braz J Microbiol 46:433–441

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hiller E, Čerňanský S, Zemanová L (2010) Sorption, degradation and leaching of the phenoxyacid herbicide MCPA in two agricultural soils. Pol J Environ Stud 19:315–321

    CAS  Google Scholar 

  28. Jayanna SK, Gayathri D (2013) Biodegradation of methoxychlor derivative, 2, 2-dichloro-4-methoxyphenyl by Bacillus sp. Global J Appl Environ Sci 3:101–110

    Google Scholar 

  29. Jayanna SK, Gayathri D (2014) Optimization of 2,4-dichlorobiphenyl (PCB Congener) degradation by Pseudomonas spp. Bull Environ Sci Res 3:1–7

    Google Scholar 

  30. Jayanna SK, Gayathri D (2015) Degradation of 2,4-dichlorobiphenyl via meta-cleavage pathway by Pseudomonas spp. consortium. Curr Microbiol 70:871–876

    Article  CAS  PubMed  Google Scholar 

  31. Jensen HL, Peterson HI (1952) Detoxication of hormone herbicides by soil bacteria. Nature (London) 170:39–40

    Article  CAS  Google Scholar 

  32. Jiang JD, Zhang RF, Li R, Gu JD, Li SP (2007) Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn5 transposon. Biodegradation 18:403–412

    Article  CAS  PubMed  Google Scholar 

  33. Khalil AB (2003) Isolation and characterization of 2,4-dichlorophenoxyacetic acid degrading organisms from soil in Jordan Valley. Biotechnology 2:73–85

    Article  Google Scholar 

  34. Kjeldsen P (1993) Groundwater pollution source characterization of an old landfill. J Hydrol 142:349–371

    Article  CAS  Google Scholar 

  35. Kohler HP (1999) Sphingomonas herbicidovorans MH: a versatile phenoxyalkanoic acid herbicide degrader. J Ind Microbiol Biotechnol 23:336–340

    Article  CAS  PubMed  Google Scholar 

  36. Kumar A, Trefault N, Olaniran AO (2016) Microbial degradation of 2,4-dichlorophenoxyacetic acid: insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 42:194–208

    CAS  PubMed  Google Scholar 

  37. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 371–375

    Google Scholar 

  38. Lee K, Johnson VJ, Blakley BR (2001) The effect of exposure to a commercial 2,4-D formulation during gestation on the immune response in CD-1 mice. Toxicology 165:39–49

    Article  CAS  PubMed  Google Scholar 

  39. Lerch TZ, Dignac MF, Barriuso E, Bardoux G, Mariotti A (2007) Tracing 2,4-D metabolism in Cupriavidus necator JMP134 with 13C-labelling technique and fatty acid profiling. J Microbiol Methods 71:162–174

    Article  CAS  PubMed  Google Scholar 

  40. Loos MA (1975) Phenoxyalkanoic acids. In: Kearney PC, Kaufman DD (eds) Herbicides: chemistry, degradation and mode of action, 2nd edn. Marcel Dekker, New York, pp 1–128

    Google Scholar 

  41. Loos MA, Roberts RN, Alexander M (1967) Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter species. Can J Microbiol 13:679–690

    Article  CAS  PubMed  Google Scholar 

  42. Loos MA, Schlosser IF, Mapham WR (1979) Phenoxy herbicide degradation in soils: quantitative studies of 2, 4-D and MCPA-degrading microbial populations. Soil Biol Biochem 1:377–385

    Article  Google Scholar 

  43. Lopes AR, Danko AS, Manaia CM, Nunes OC (2013) Molinate biodegradation in soils: natural attenuation versus bioaugmentation. Appl Microbiol Biotechnol 97:2691–2700

    Article  CAS  PubMed  Google Scholar 

  44. Ma JY, Quan XC, Yang ZF, Li AJ (2012) Biodegradation of a mixture of 2,4-dichlorophenoxyacetic acid and multiple chlorophenols by aerobic granules cultivated through plasmid pJP4 mediated bioaugmentation. Chem Eng J 181–182:144–151

    Article  Google Scholar 

  45. Marczewska AD, Blachnio M, Marczewski AW, Swiatkowski A, Tarasiuk B (2010) Adsorption of selected herbicides from aqueous solutions on activated carbon. J Therm Anal Calorim 101:785–794

    Article  Google Scholar 

  46. Mattsson JL, Charles JM, Yano BL, Cunny HC, Wilson RD, Bus JS (1997) Single-dose and chronic dietary neurotoxicity screening studies on 2,4-dichlorophenoxyacetic acid in rats. Fundam Appl Toxicol 40:111–119

    Article  CAS  PubMed  Google Scholar 

  47. Mattsson JL, Eisenbrandt DL (1990) The improbable association between the herbicide 2,4-D and polyneuropathy. Biomed Environ Sci 3:43–51

    CAS  PubMed  Google Scholar 

  48. Newby DT, Gentry TJ, Pepper IL (2000) Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl Environ Microbiol 66:3399–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oliveira GH, Palermo-Neto J (1995) Toxicology of 2,4-dichlorophenoxyacetic acid (2,4-D) and its determination in serum and brain tissue using gas chromatography-electron-capture detection. J Anal Toxicol 19:251–255

    Article  CAS  PubMed  Google Scholar 

  50. Onneby K, Jonsson A, Stenstrom J (2010) A new concept for reduction of diffuse contamination by simultaneous application of pesticide and pesticide-degrading microorganisms. Biodegradation 21:21–29

    Article  PubMed  Google Scholar 

  51. Onneby K, Hakansson S, Pizzul L, Stenstrom J (2014) Reduced leaching of the herbicide MCPA after bioaugmentation with a formulated and stored Sphingobium sp. Biodegradation 25:291–300

    Article  PubMed  Google Scholar 

  52. Poll C, Pagel H, Devers-Lamrani M, Martin-Laurent F, Ingwersen J, Streck T, Kandeler E (2010) Regulation of bacterial and fungal MCPA degradation at the soil–litter interface. Soil Biol Biochem 42:1879–1887

    Article  CAS  Google Scholar 

  53. Que-Hee SS, Sutherland RG (1981) The phenoxyalkanoic herbicides: chemistry analysis and environmental pollution, vol I. CRC Press Inc, Boca Raton

    Google Scholar 

  54. Rogoff MH, Reid JJ (1956) Bacterial decomposition of 2,4-dichlorophenoxyacetic acid. J Bacteriol 71:303–307

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosso SB, Di Paolo OA, Evangelista-de-Duffard AM, Duffard R (1997) Effects of 2,4-dichlorophenoxyacetic acid on central nervous system of developmental rats: associated changes in ganglioside pattern. Brain Res 769:163–167

    Article  CAS  PubMed  Google Scholar 

  56. Sanchis S, Polo AM, Tobajas M, Rodríguez JJ, Mohedano AF (2014) Strategies to evaluate biodegradability: application to chlorinated herbicides. Environ Sci Pollut Res 21:9445–9452

    Article  CAS  Google Scholar 

  57. Sanders HO (1969) Toxicity of pesticides to the crustacean Gammarus lacustris. Technical Papers of the Bureau of Sport Fisheries and Wildlife

  58. Shin HS, Jung DG (2006) Determination of chlorine dioxide in water by gas chromatography–mass spectrometry. J Chromatogr A 1123:92–97

    Article  CAS  PubMed  Google Scholar 

  59. Statham CN, Lech JJ (1976) Studies on the mechanism of potentiation of the acute toxicity of 2,4-D n-butyl ester and 2′,5-dichloro-4′-nitrosalicylanilide in rainbow trout by carbaryl. Toxicol Appl Pharmacol 36:281–296

    Article  CAS  PubMed  Google Scholar 

  60. Streber WR, Timmis KN, Zenk MH (1987) Analysis, cloning, and high-level expression of 2, 4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMPl34. J Bacteriol 169:2950–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Somaraja PK, Gayathri D, Ramaiah N (2013) Molecular characterization of 2-chlorobiphenyl degrading Stenotrophomonas maltophilia GS-103. Bull Environ Contam Toxicol 91:148–153

    Article  CAS  PubMed  Google Scholar 

  62. Tan L, Hu QL, Xiong XY, Su XJ, Huang YN, Jiang ZW, Zhou QM, Zhao SY, Zeng WA (2013) Isolation and characterization of a novel 2-methyl-4-chlorophenoxyacetic acid-degrading Enterobacter sp. strain SE08. Ecotoxicol Environ Saf 96:198–204

    Article  CAS  PubMed  Google Scholar 

  63. Vedler E, Koiv V, Heinaru A (2000) Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene 255:281–288

    Article  CAS  PubMed  Google Scholar 

  64. Vedler E, Merle V, Heinaru A (2004) The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harbouring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 186:7161–7174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Villalobos AR, Dunnick CA, Pritchard JB (1996) Mechanism mediating basolateral transport of 2,4-dichlorophenoxyacetic acid in rat kidney. J Pharmacol Exp Ther 278:582–589

    CAS  PubMed  Google Scholar 

  66. Walker RL, Newman AS (1956) Microbial decomposition of 2,4-dichlorophenoxyacetic acid. Appl Microbiol 4:201–206

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Worthing CR, Hance RJ (1991) The pesticide manual—a world compendium, 9th edn. The British Crop Council, Farnham

    Google Scholar 

  68. Xu YH (2007) Chemical protection of pants. China Agriculture Press, Beijing

    Google Scholar 

  69. Zabaloy MC, Garland JL, Gomez MA (2010) Assessment of the impact of 2,4-dichlorophenoxyacetic acid (2,4-D) on indigenous herbicide degrading bacteria and microbial community function in an agricultural soil. Appl Soil Ecol 46:240–246

    Article  Google Scholar 

  70. Zabaloy MC, Gómez MA (2013) Isolation and characterization of indigenous 2,4-D herbicide degrading bacteria from an agricultural soil in proximity of Sauce Grande River Argentina. Ann Microbiol. doi:10.1007/s13213-013-0731-9

    Google Scholar 

  71. Zhang L, Song M, Cao Q, Wu S, Zhao Y, Huang JW, Chen K, Li SP, Xia ZY, Jiang JD (2015) Camelimonas fluminis sp. nov., a cyhalothrin-degrading bacterium isolated from river water. Int J Syst Evol Microbiol 65:3109–3114

    Article  CAS  PubMed  Google Scholar 

  72. Zhang L, Zhou QX, Song M, Chen XL, Xu XH, Chen K, Li SP, Jiang JD (2015) Qingshengfania soli gen. nov., sp. nov., a member of the order Rhizobiales isolated from the soil of a pesticide factory. Int J Syst Evol Microbiol 65:4608–4614

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Foundation from Yunnan Tobacco Company (2014YN08), the Outstanding Youth Foundation of Jiangsu Province (BK20130029), the Fundamental Research Funds for the Central Universities (KYZ201422) and the Chinese National Natural Science Foundation (31501657).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Gu or Jian-Dong Jiang.

Additional information

Zhen-Yuan Xia and Long Zhang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 268 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, ZY., Zhang, L., Zhao, Y. et al. Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35. Curr Microbiol 74, 193–202 (2017). https://doi.org/10.1007/s00284-016-1173-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1173-y

Keywords

Navigation