Skip to main content
Log in

Quorum-Sensing Mechanisms and Bacterial Response to Antibiotics in P. aeruginosa

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Emergence and worldwide spreading of resistant bacteria to antibiotic have raised the importance for finding therapeutic alternative to compensate antibiotic drawbacks. Quorum sensing (QS) is a cell-to-cell communication involved in the development of various common bacterial behaviors including virulence factors expression, and targeting QS seems to be relevant to the struggle against bacterial infection. In this report, relevant literature on intrication of QS system and antimicrobial sensitivity mechanisms in P. aeruginosa PAO1 are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acar J, Davies J (2009) Antibiotic resistance: an ecological perspective on an old problem. A report from the American Academy of Microbiology, p 32

  2. Bassler BL, Miller MB (2013) Quorum sensing. In: The prokaryotes, Springer, Berlin, pp 495–509

  3. Bjarnsholt T, Givskov M (2007) The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Anal Bioanal Chem 387(2):409–414

    Article  CAS  PubMed  Google Scholar 

  4. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51

    Article  CAS  PubMed  Google Scholar 

  5. Cantas L, Shah SQ, Cavaco LM, Manaia C, Walsh F, Popowska M et al (2013) A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol 4:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deep A, Chaudhary U, Gupta V (2011) Quorum sensing and bacterial pathogenicity: from molecules to disease. J Lab Physicians 3(1):4–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50(1):29–43

    Article  CAS  PubMed  Google Scholar 

  9. English BK, Gaur AH (2010) The use and abuse of antibiotics and the development of antibiotic resistance. In: Hot Topics in infection and immunity in children VI. Springer, New York, pp 73–82

  10. Evans K, Passador L, Srikumar R, Tsang E, Nezezon J, Poole K (1998) Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol 180(20):5443–5447

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Frost KJ, Fernandes T (2007) An overview of antibiotic therapy. Nurs Stand 22(9):51–57

    Article  PubMed  Google Scholar 

  12. Hills T (2010) Antibacterial chemotherapy. In: Lymn J, Bowskill D, Bath-Hextall F, Knaggs R (eds) The new prescriber: an integrated approach to medical and non-medical prescribing. Wiley, Chichester, pp 444–460

    Google Scholar 

  13. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76(1):46–65

    Article  CAS  PubMed  Google Scholar 

  14. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37(2):121–140

    Article  CAS  PubMed  Google Scholar 

  15. Kaplan HB, Greenberg E (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J Bacteriol 163(3):1210–1214

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Karatuna O, Yagci A (2010) Analysis of quorum sensing-dependent virulence factor production and its relationship with antimicrobial susceptibility in Pseudomonas aeruginosa respiratory isolates. Clin Microbiol Infect 16(12):1770–1775

    Article  CAS  PubMed  Google Scholar 

  17. Köhler T, van Delden C, Curty LK, Hamzehpour MM, Pechere J-C (2001) Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183(18):5213–5222

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lambert P (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 95(Suppl 41):22–26

    CAS  PubMed  PubMed Central  Google Scholar 

  19. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77(1):73–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J et al (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9(5):339–443

    Article  CAS  PubMed  Google Scholar 

  21. Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41

    Article  CAS  PubMed  Google Scholar 

  22. Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22(4):582–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    Article  CAS  PubMed  Google Scholar 

  24. Malléa M, Mahamoud A, Chevalier J, Alibert-Franco S, Brouant P, Barbe J (2003) Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J 376:801–805

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maseda H, Sawada I, Saito K, Uchiyama H, Nakae T, Nomura N (2004) Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 48(4):1320–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T (2000) Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 44(12):3322–3327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Minagawa S, Inami H, Kato T, Sawada S, Yasuki T, Miyairi S et al (2012) RND type efflux pump system MexAB-OprM of Pseudomonas aeruginosa selects bacterial languages, 3-oxo-acyl-homoserine lactones, for cell-to-cell communication. BMC Microbiol 12(1):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murakami S, Nakashima R, Yamashita E, Yamaguchi A (2002) Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419(6907):587–593

    Article  CAS  PubMed  Google Scholar 

  29. Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181(4):1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Poole K, Srikumar R (2001) Multidrug efflux in Pseudomonas aeruginosa components, mechanisms and clinical significance. Curr Top Med Chem 1(1):59–71

    Article  CAS  PubMed  Google Scholar 

  31. Poonsuk K, Chuanchuen R (2014) Detection of the mex efflux pumps in Pseudomonas aeruginosa by using a combined resistance-phenotypic markers and multiplex RT-PCR. Open J Med Microbiol 4(03):153–160

    Article  CAS  Google Scholar 

  32. Pourmand MR, Sadighian H, Naderi M (2013) Relation between Expression of the las quorum-sensing system in clinical isolates of Pseudomonas aeruginosa and expression of efflux pump and ampC. J Med Bacteriol 2(3, 4):32–40

    CAS  Google Scholar 

  33. Putman M, van Veen HW, Konings WN (2000) Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64(4):672–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rahmati S, Yang S, Davidson AL, Zechiedrich EL (2002) Control of the AcrAB multidrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol 43(3):677–685

    Article  CAS  PubMed  Google Scholar 

  35. Rampioni G, Schuster M, Greenberg EP, Zennaro E, Leoni L (2009) Contribution of the RsaL global regulator to Pseudomonas aeruginosa virulence and biofilm formation. FEMS Microbiol Lett 301(2):210–217

    Article  CAS  PubMed  Google Scholar 

  36. Sitnikov DM, Schineller JB, Baldwin TO (1996) Control of cell division in Escherichia coli: regulation of transcription of ftsQA involves both rpoS and SdiA-mediated autoinduction. Proc Natl Acad Sci USA 93(1):336–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tam VH, Chang K-T, Abdelraouf K, Brioso CG, Ameka M, McCaskey LA et al (2010) Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 54(3):1160–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Venter H, Mowla R, Ohene-Agyei T, Ma S (2015) RND-type drug efflux pumps from gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 6:377. doi:10.3389/fmicb.2015.00377

    Article  PubMed  PubMed Central  Google Scholar 

  39. WHO (2014) Antimicrobial resistance: global report on surveillance. WHO Press, Geneva Switzerland, 257 pages (ISBN: 978 92 4 156474 8), http://www.who.int/drugresistance/documents/surveillancereport/en

  40. Wilder CN, Diggle SP, Schuster M (2011) Cooperation and cheating in Pseudomonas aeruginosa: the roles of the las, rhl and pqs quorum-sensing systems. ISME J 5(8):1332–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the Project PIC-Madagascar 2009 and the postdoctoral fellowship programs “ELAN 2015” and “ELAN 2016” of the ARES-CCD (Académie de Recherche et d’Enseignement Supérieur-Commission Coopération au Développement, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsiry Rasamiravaka.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasamiravaka, T., El Jaziri, M. Quorum-Sensing Mechanisms and Bacterial Response to Antibiotics in P. aeruginosa . Curr Microbiol 73, 747–753 (2016). https://doi.org/10.1007/s00284-016-1101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1101-1

Keywords

Navigation