Skip to main content
Log in

The Cryptic dsdA Gene Encodes a Functional d-Serine Dehydratase in Pseudomonas aeruginosa PAO1

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

d-Serine, an important neurotransmitter, also contributes to bacterial adaptation and virulence in humans. It was reported that Pseudomonas aeruginosa PAO1 can grow on d-serine as the sole nitrogen source, and growth was severely reduced in the dadA mutant devoid of the d-alanine dehydrogenase with broad substrate specificity. In this study, the dsdA gene (PA3357) encoding a putative d-serine dehydratase was subjected to further characterization. Growth on d-serine as the sole source of nitrogen was retained in the ∆dsdA mutant and was abolished completely in the ∆dadA and ∆dadA-∆dsdA mutants. However, when complemented by dsdA on a plasmid, the double mutant was able to grow on d-serine as the sole source of carbon and nitrogen, supporting the proposed biochemical function of DsdA in the conversion of d-serine into pyruvate and ammonia. Among d- and l-amino acids tested, only d-serine and d-threonine could serve as the substrates of DsdA, and the Km of DsdA with d-serine was calculated to be 330 μM. Comparative genomics revealed that this cryptic dsdA gene was highly conserved in strains of P. aeruginosa, and that most strains of Pseudomonas putida possess putative dsdCAX genes encoding a transcriptional regulator DsdC and a d-serine transporter DsdX as in enteric bacteria. In conclusion, this study supports the presence of a cryptic dsdA gene encoding a functional d-serine dehydratase in P. aeruginosa, and the absence of dsdA expression in response to exogenous d-serine might be due to the loss of regulatory elements for gene activation during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anfora AT, Haugen BJ, Roesch P, Redford P, Welch RA (2007) Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect Immun 75(11):5298–5304. doi:10.1128/IAI.00652-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bruckner H, Haasmann S, Friedrich A (1994) Quantification of d-amino acids in human urine using GC–MS and HPLC. Amino Acids 6(2):205–211. doi:10.1007/BF00805848

    Article  CAS  PubMed  Google Scholar 

  3. Bruckner H, Hausch M (1993) Gas chromatographic characterization of free d-amino acids in the blood serum of patients with renal disorders and of healthy volunteers. J Chromatogr 614(1):7–17

    Article  CAS  PubMed  Google Scholar 

  4. Cava F, de Pedro MA, Lam H, Davis BM, Waldor MK (2011) Distinct pathways for modification of the bacterial cell wall by non-canonical d-amino acids. EMBO J 30(16):3442–3453. doi:10.1038/emboj.2011.246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cava F, Lam H, de Pedro MA, Waldor MK (2011) Emerging knowledge of regulatory roles of d-amino acids in bacteria. Cell Mol Life Sci 68(5):817–831. doi:10.1007/s00018-010-0571-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chou HT, Hegazy M, Lu CD (2010) l-Lysine catabolism is controlled by l-arginine and ArgR in Pseudomonas aeruginosa PAO1. J Bacteriol 192(22):5874–5880. doi:10.1128/JB.00673-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cosloy SD, McFall E (1973) Metabolism of d-serine in Escherichia coli K-12: mechanism of growth inhibition. J Bacteriol 114(2):685–694

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Farinha MA, Kropinski AM (1990) Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172(6):3496–3499

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedman M (1991) Formation, nutritional value, and safety of d-amino acids. Adv Exp Med Biol 289:447–481

    Article  CAS  PubMed  Google Scholar 

  10. Friedman M (1999) Chemistry, nutrition, and microbiology of d-amino acids. J Agric Food Chem 47(9):3457–3479

    Article  CAS  PubMed  Google Scholar 

  11. Gallegos MT, Schleif R, Bairoch A, Hofmann K, Ramos JL (1997) Arac/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61(4):393–410

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Haas D, Holloway BW, Schambock A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154(1):7–22

    Article  CAS  PubMed  Google Scholar 

  13. Hashimoto A, Oka T (1997) Free d-aspartate and d-serine in the mammalian brain and periphery. Prog Neurobiol 52(4):325–353

    Article  CAS  PubMed  Google Scholar 

  14. He W, Li C, Lu CD (2011) Regulation and characterization of the dadRAX locus for d-amino acid catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 193(9):2107–2115. doi:10.1128/JB.00036-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. He W, Li G, Yang CK, Lu CD (2014) Functional characterization of the dguRABC locus for d-Glu and d-Gln utilization in Pseudomonas aeruginosa PAO1. Microbiology 160(Pt 10):2331–2340. doi:10.1099/mic.0.081141-0

    Article  CAS  PubMed  Google Scholar 

  16. Huang Y, Nishikawa T, Satoh K, Iwata T, Fukushima T, Santa T, Homma H, Imai K (1998) Urinary excretion of d-serine in human: comparison of different ages and species. Biol Pharm Bull 21(2):156–162

    Article  CAS  PubMed  Google Scholar 

  17. Imai K, Fukushima T, Santa T, Homma H, Huang Y, Sakai K, Kato M (1997) Distribution of free d-amino acids in tissues and body fluids of vertebrates. Enantiomer 2(3–4):143–145

    CAS  PubMed  Google Scholar 

  18. Ito T, Takahashi K, Naka T, Hemmi H, Yoshimura T (2007) Enzymatic assay of d-serine using d-serine dehydratase from Saccharomyces cerevisiae. Anal Biochem 371(2):167–172. doi:10.1016/j.ab.2007.07.030

    Article  CAS  PubMed  Google Scholar 

  19. Lam H, Oh DC, Cava F, Takacs CN, Clardy J, de Pedro MA, Waldor MK (2009) d-Amino acids govern stationary phase cell wall remodeling in bacteria. Science 325(5947):1552–1555. doi:10.1126/science.1178123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li C, Lu CD (2009) Arginine racemization by coupled catabolic and anabolic dehydrogenases. Proc Natl Acad Sci USA 106(3):906–911. doi:10.1073/pnas.0808269106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roesch PL, Redford P, Batchelet S, Moritz RL, Pellett S, Haugen BJ, Blattner FR, Welch RA (2003) Uropathogenic Escherichia coli use d-serine deaminase to modulate infection of the murine urinary tract. Mol Microbiol 49(1):55–67

    Article  CAS  PubMed  Google Scholar 

  22. Schweizer HP (1991) EscherichiaPseudomonas shuttle vectors derived from pUC18/19. Gene 97(1):109–121

    Article  CAS  PubMed  Google Scholar 

  23. Suzuki C, Murakami M, Yokobori H, Tanaka H, Ishida T, Horiike K, Nagata Y (2011) Rapid determination of free d-serine with chicken d-serine dehydratase. J Chromatogr B 879(29):3326–3330. doi:10.1016/j.jchromb.2011.07.028

    Article  CAS  Google Scholar 

  24. Yang Z, Lu CD (2007) Functional genomics enables identification of genes of the arginine transaminase pathway in Pseudomonas aeruginosa. J Bacteriol 189(11):3945–3953. doi:10.1128/JB.00261-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yao X, He W, Lu CD (2011) Functional characterization of seven gamma-glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and beta-alanine utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 193(15):3923–3930. doi:10.1128/JB.05105-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation MCB 0950217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Dar Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Lu, CD. The Cryptic dsdA Gene Encodes a Functional d-Serine Dehydratase in Pseudomonas aeruginosa PAO1. Curr Microbiol 72, 788–794 (2016). https://doi.org/10.1007/s00284-016-1021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1021-0

Keywords

Navigation