Skip to main content
Log in

Application of Routine Diagnostic Procedure, VITEK 2 Compact, MALDI-TOF MS, and PCR Assays in Identification Procedure of Bacterial Strain with Ambiguous Phenotype

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In diagnostic microbiology as well as in microbiological research, the identification of a microorganism is a crucial and decisive stage. A broad choice of methods is available, based on both phenotypic and molecular properties of microbes. The aim of this study was to compare the application of phenotypic and molecular tools in bacterial identification on the example of Gram-negative intestine rod with an ambiguous phenotype. Different methods of identification procedure, which based on various properties of bacteria, were applied, e.g., microscopic observation of single-bacterial cells, macroscopic observation of bacterial colonies morphology, the automated system of microorganism identification (biochemical tests), the mass spectrometry method (analysis of bacterial proteome), and genetic analysis with PCR reactions. The obtained results revealed discrepancies in the identification of the tested bacterial strain with an atypical phenotype: mucous morphology of colonies, not characteristic for either E. coli and Citrobacter spp., mass spectrometry analysis of proteome initially assigned the tested strain to Citrobacter genus (C. freundii) and biochemical profiles pointed to Escherichia coli. A decisive method in the current study was genetic analysis with PCR reactions which identified conserved genetic sequences highly specific to E. coli species in the genome of the tested strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amor KB, Vaughan EE, de Vos WM (2007) Advanced molecular tools for the identification of lactic acid bacteria. J Nutr 137:741S–747S

    PubMed  Google Scholar 

  2. Avery SV (2006) Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Microbiol 4:577–587

    Article  CAS  PubMed  Google Scholar 

  3. Barry J, Brown A, Ensor V, Lakhani U, Petts D, Warren C, Winstanley T (2003) Comparative evaluation of the VITEK 2 advanced expert system (AES) in five UK hospitals. J Antimicrob Chemoth. 51:1191–1202

    Article  CAS  Google Scholar 

  4. Bélanger L, Garenaux A, Harel J, Boulianne M, Nadeau E, Dozois CM (2011) Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS Immunol Med Microbiol 62:1–10

    Article  PubMed  Google Scholar 

  5. bioMérieux (2015, April 19). Retrieved from http://www.biomerieux.pl/

  6. Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti JL, Ferroni A, Gutmann L, Nassif X (2011) MALDI-TOF mass spectrometry tools forbacterial identification in clinical microbiology laboratory. Clin Biochem 44:164–169

    Article  Google Scholar 

  7. Charles River Laboratories International (2013, April 9) Retrieved from http://www.criver.com/products-services/rapid-micro/accugenix-microbial-identification-strain-typing/accupro-id

  8. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dare DJ, Sutton HE, Keys C, Shah HN, Wells G, McDowall MA (2003) Optimalization of a database for rapid identification of intact bacterial cells of Escherichia coli by matrix–assisted laser desorption/jonization time-of-flight mass spectometry, presented at ASMS, Montreal, Canada, 8th–12th June 2003, PosterReprint

  10. De Carolis E, Vella A, Vaccaro L, Torelli R, Spanu T, Fiori B, Posteraro B, Sanguinetti M (2014) Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. J Infect Dev Ctries. 8:1081–1088

    Article  PubMed  Google Scholar 

  11. Dongyou L (2010) Molecular detection of foodborne pathogens. CRC Press, Boca Raton

    Google Scholar 

  12. Emerson D, Agulto L, Liu H, Liu L (2008) Identifying and characterizing bacteria in an era of genomics and proteomics. Bioscience 58:925–936

    Article  Google Scholar 

  13. Ewers C, Janssen T, Kiessling S, Philipp HC, Wieler LH (2005) Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis 49:269–273

    Article  PubMed  Google Scholar 

  14. Farrance CE, Patel N, Russel A, Charles River Laboratories (2014) Effect of MALDI-TOF library development on the efficiency of operations and tracking and trending capability. PDA 9th, Annnual Global Conference on Pharmaceutical Microbiology, Bethesda. http://www.criver.com/files/pdfs/emd/accugenix/maldi-tof-library-development-operations-trending.aspx

  15. Funke G, Monnet D, de Bernardis C, von Graevenitz A, Freney J (1998) Evaluation of the VITEK 2 system for rapid identification of medically relevant gram-negative rods. J Clin Microbiol 36:1948–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gad GFM, El-Adawy AR, Mohammed MS, Ahmed AF, Mohamed HA (2014) Evaluation of different diagnostic methods of bacterial vaginosis. IOSR-JDMS 13:15–23

    Article  Google Scholar 

  17. Houpikian P, Raoult D (2002) Traditional and molecular techniques for the study of emerging bacterial diseases: one laboratory’s perspective. Emerg Infect Dis 8:122–131

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jadhav S, Sevior D, Bhave M, Palombo EA (2014) Detection of Listeria monocytogenes from selective enrichment broth using MALDI–TOF Mass Spectrometry. J Proteomics 97:100–106

    Article  CAS  PubMed  Google Scholar 

  19. Janßena T, Schwarz C, Preikschat P, Voss M, Philipp HC, Wieler LH (2001) Virulence-associated genes in avian pathogenic Escherichia coli (APEC) isolated from internal organs of poultry having died from colibacillosis. Int J Med Microbiol 291:371–378

    Article  Google Scholar 

  20. Jarząb A, Górska-Frączek S, Rybka J, Witkowska D (2011) Zakażenia pałeczkami jelitowymi – diagnostyka, oporność na antybiotyki i profilaktyka in Polish. Postep Hig Med Dosw. 65:55–72

    Article  Google Scholar 

  21. Johnson JR, Stell AL (2000) Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181:261–272

    Article  CAS  PubMed  Google Scholar 

  22. Khan AR, Nandi K, Das SC, Ramamurthy T, Khanam J, Shimizu T, Yamasaki S, Bhattacharya SK, Chaicumpa W, Takeda Y, Balakrish Nair G (2003) Environmental isolates of Citrobacter braakii that agglutinate with Escherichia coli O157 antiserum but do not possess the genes responsible for the biosynthesis of O157 somatic antigen. Epidemiol Infect 130:179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan IU, Gannon V, Kent R, Koning W, Lapen DR, Miller J, Neumann N, Phillips R, Robertson W, Topp E, van Bochove E, Edge TA (2007) Development of a rapid quantitative PCR assay for direct detection and quantification of culturable and non-culturable Escherichia coli from agriculture watersheds. J Microbiol Method 69:480–488

    Article  CAS  Google Scholar 

  24. Kudinha T, Kong F, Johnson JR, Andrew SD, Anderson P, Gilbert GL (2012) Multiplex PCR based revers line blot assay for simultaneous detection of 22 virulence genes in uropathogenic E. coli. Appl Environ Microbiol 78:1198–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lay JJ (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20:172–194

    Article  CAS  PubMed  Google Scholar 

  26. Lee M, Chung HS, Moon HW, Lee SH, Lee K (2015) Comparative evaluation of two matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems, Vitek MS and Microflex LT, for the identification of gram-positive cocci routinely isolated in clinical microbiology laborat. J Microbiol Method 113:13–15

    Article  CAS  Google Scholar 

  27. Luedtke BE, Bono JL, Bosilevac JM (2014) Evaluation of real time PCR assays for the detection and enumeration of enterohemorrhagic Escherichia coli directly from cattle feces. J Microbiol Method 105:72–79

    Article  CAS  Google Scholar 

  28. Maheux AF, Picard FJ, Boissinot M, Bissonnette L, Paradis S, Bergeron MG (2009) Analytical comparison of nine PCR primer sets designed to detect the presence of Escherichia coli/Shigella in water samples. Water Res 43:3019–3028

    Article  CAS  PubMed  Google Scholar 

  29. Mohanasoundaram KM, Lalitha MK (2008) Comparison of phenotypic versus genotypic methods in the detection of methicillin resistance in Staphylococcus aureus. Indian J Med Res 127:78–84

    CAS  PubMed  Google Scholar 

  30. Nishiuchi Y, Doe M, Hotta H, Kobayashi K (2000) Structure and serologic properties of O-specific polysaccharide from Citrobacter freundii possessing cross-reactivity with Escherichia coli O157:H7. FEMS Immunol Med Microbiol 28:163–171

    Article  CAS  PubMed  Google Scholar 

  31. Russo TA, Johnson JR (2003) Medical and economic impact of extraintestinal infections due to Escherichia coli: an overlooked epidemic. Microbes Infect 5:449–456

    Article  PubMed  Google Scholar 

  32. Saffert RT, Cunningham SA, Ihde SM, Jobe KE, Mandrekar J, Patel R (2011) Comparison of Bruker Biotyper matrix-assisted laser desorptionionization–time of flight mass spectrometer to BD phoenix automated microbiology system for identification of gram-negative bacilli. J Clin Microbiol 49:887–892

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schmidt H, Scheef J, Morabito S, Caprioli A, Wieler LH, Karch H (2000) A new shiga toxin 2 variant (stx2f) from Escherichia coli isolated from pigeons. Appl Environ Microbiol 66:1205–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sousa AM, Machado I, Pereira MO (2011) Phenotypic switching: an opportunity to bacteria thrive. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, pp 252–262

    Google Scholar 

  35. Sousa CP (2006) Escherichia coli as a specialized bacterial pathogen. Rev Biol E Ciências Da Terra 6:341–352

    Google Scholar 

  36. Tantawiwat S, Tansuphasiri U, Wongwit W, Wongchotigul V, Kitayaporn D (2005) Development of multiplex PCR forthe detection of total coliform bacteria for Escherichia coli and Clostridium perfringens in drinking water. Southeast Asian J Trop Med Public Health 36:162–169

    CAS  PubMed  Google Scholar 

  37. Texier S, Prigent-Combaret C, Gourdon MH, Poirier MA, Faivre P, Dorioz JM, Poulenard J, Jocteur-Monrozier L, Moënne-Loccoz Y, Trevisan D (2008) Persistence of culturable Escherichia coli fecal contaminants in dairy Alpine grassland soils. J Environ Qual 37:2299–2310

    Article  CAS  PubMed  Google Scholar 

  38. Tsen HY, Lin CK, Chi WR (1998) Development and use of 16SrRNA gene targeted PCR primers for the identification of Escherichia coli cells in water. J Appl Microbiol 85:554–560

    Article  CAS  PubMed  Google Scholar 

  39. van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization–time offlight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48(3):900–907

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vidal M, Kruger E, Durán C, Lagos R, Levine M, Prado V, Toro C, Vidal R (2005) Single multiplex PCR assay to identify simultaneously the six categories of diarrheagenic Escherichia coli associated with enteric infections. J Clin Microbiol 43:5362–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yıldırım IH, Yıldırım SC, Koçak N (2011) Molecular methods for bacterial genotyping and analyzed gene regions. J Microbiol Infect Dis 1:42–46

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Andrzej Gamian (Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland) for the bacterial strains from the Polish Collection of Microorganisms; the director of the ZOO Wrocław, Radosław Ratajszczak; and employees of the Zoological Garden in Wrocław for their help in providing the biological samples and for the permission to use them in bacteriological research.

Funding

The funding source(s) had no such involvement in presented research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Książczyk.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Książczyk, M., Kuczkowski, M., Dudek, B. et al. Application of Routine Diagnostic Procedure, VITEK 2 Compact, MALDI-TOF MS, and PCR Assays in Identification Procedure of Bacterial Strain with Ambiguous Phenotype. Curr Microbiol 72, 570–582 (2016). https://doi.org/10.1007/s00284-016-0993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-0993-0

Keywords

Navigation