Skip to main content
Log in

RpoE is a Putative Antibiotic Resistance Regulator of Salmonella enteric Serovar Typhi

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Bacterial antimicrobial resistance has been associated with the up regulation of genes encoding efflux pumps and the down regulation of genes encoding outer membrane proteins (OMPs). Gene expression in bacteria is primarily initiated by sigma factors (σ factors) such as RpoE, which plays an important role in responding to many environmental stresses. Here, we report the first observation that RpoE serves as an antibiotic resistance regulator in Salmonella enteric serovar Typhi (S. Typhi). In this study, we found that the rpoE mutant (ΔrpoE) of S. Typhi GIFU10007 has elevated resistance to several antimicrobial agents, including β-lactams, quinolones, and aminoglycosides. Genomic DNA microarray analysis was used to investigate the differential gene expression profiles between a wild type and rpoE mutant in response to ampicillin. The results showed that a total of 57 genes displayed differential expression (two-fold increase or decrease) in ΔrpoE versus the wild-type strain. The expressions of two outer membrane protein genes, ompF and ompC, were significantly down-regulated in ΔrpoE (six and seven-fold lower in comparison to wild-type strain) and RamA, a member of the efflux pump AraC/XylS family, was up-regulated about four-fold in the ΔrpoE. Our results suggest RpoE is a potential antimicrobial regulator in S. Typhi, controlling both the down regulation of the OMP genes and up-regulating the efflux system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alba BM, Zhong HJ, Pelayo JC et al (2001) degS (hhoB) is an essential Escherichia coli gene whose indispensable function is to provide sigma (E) activity. Mol Microbiol 40:1323–1333

    Article  CAS  PubMed  Google Scholar 

  2. Alba BM, Leeds JA, Onufryk C et al (2002) DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress response. Genes Dev 16:2156–2168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52:613–619

    Article  CAS  PubMed  Google Scholar 

  4. Bailey AM, Ivens A, Kingsley R et al (2010) RamA, a member of the AraC/XylS family, influences both virulence and efflux in Salmonella enterica serovar Typhimurium. J Bacteriol 192:1607–1616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Batchelor E, Walthers D, Kenney LJ et al (2005) The Escherichia coli CpxA-CpxR envelope stress response system regulates expression of the porins ompF and ompC. J Bacteriol 187:5723–5731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Blair JM, La Ragione RM, Woodward MJ et al (2009) Periplasmic adaptor protein AcrA has a distinct role in the antibiotic resistance and virulence of Salmonella enterica serovar Typhimurium. J Antimic Chemother 64:965–972

    Article  CAS  Google Scholar 

  7. Borukhov S, Severinov K (2002) Role of the RNA polymerase sigma subunit in transcription initiation. Res Microbiol 153:557–562

    Article  CAS  PubMed  Google Scholar 

  8. CLSI (2012) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition (M07-A9). Clinical and Laboratory Standard Institute, Wayne

    Google Scholar 

  9. CLSI (2014) Performance standards for antimicrobial susceptibility testing; twenty-third Informational supplement, M100-S24. Clinical and Laboratory Standard Institute, Wayne

    Google Scholar 

  10. Cohen SP, Hooper DC, Wolfson JS et al (1988) Endogenous active efflux of norfloxacin in susceptible Escherichia coli. Antimicrob Agents Chemother 32:1187–1191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Crouch ML, Becker LA, Bang IS et al (2005) The alternative sigma factor sigma is required for resistance of Salmonella enterica serovar Typhimurium to anti-microbial peptides. Mol Microbiol 56:789–799

    Article  CAS  PubMed  Google Scholar 

  12. Davin-Regli A, Bolla JM, James CE et al (2008) Membrane permeability and regulation of drug “influx and efflux” in enterobacterial pathogens. Curr Drug Targets 9:750–759

    Article  CAS  PubMed  Google Scholar 

  13. Du H, Sheng X, Zhang H, Zou X et al (2011) RpoE may promote flagellar gene expression in Salmonella enterica serovar typhi under hyperosmotic stress. Curr Microbiol 62:492–500

    Article  CAS  PubMed  Google Scholar 

  14. Du H, Wang M, Luo Z, Ni B (2011) Coregulation of gene expression by sigma factors RpoE and RpoS in Salmonella enterica serovar Typhi during hyperosmotic stress. Curr Microbiol 62:1483–1489

    Article  CAS  PubMed  Google Scholar 

  15. Fredrick K, Helmann JD (1997) RNA polymerase sigma factor determines start-site selection but is not required for upstream promoter element activation on heteroduplex (bubble) templates. Proc Natl Acad Sci USA 94:4982–4987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Grigorova IL, Chaba R, Zhong HJ (2004) Fine-tuning of the Escherichia coli sigmaE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev 18:2686–2697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hayden JD, Ades SE (2008) The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in Escherichia coli. PLoS One 3:e1573

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hirai K, Aoyama H, Irikura T et al (1986) Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 29:535–538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hollenbeck BL, Rice LB (2012) Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 3:421–433

    Article  PubMed Central  PubMed  Google Scholar 

  20. Huang X, le Phung V, Dejsirilert S et al (2004) Cloning and characterization of the gene encoding the z66 antigen of Salmonella enterica serovar Typhi. FEMS Microbiol Lett 234:239–246

    Article  CAS  PubMed  Google Scholar 

  21. Huang XX, Xu HX, Sun XS et al (2007) Genome-wide scan of the gene expression kinetics of Salmonella enterica serovar Typhi during hyperosmotic stress. Int J Mol Sci 8:116–135

    Article  PubMed Central  CAS  Google Scholar 

  22. Jaffe A, Chabbert YA, Semonin O (1982) Role of porin proteins OmpF and OmpC in the permeation of beta-lactams. Antimicrob Agents Chemother 22:942–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Keeney D, Ruzin A, Bradford PA (2007) RamA, a transcriptional regulator, and AcrAB, an RND-type efflux pump, are associated with decreased susceptibility to tigecycline in Enterobacter cloacae. Microbial drug resistance 13:1–6

    Article  CAS  PubMed  Google Scholar 

  24. Lawler AJ, Ricci V, Busby SJ et al (2013) Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 68:1551–1557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Martins A, Hunyadi A, Amaral L (2013) Mechanisms of resistance in bacteria: an evolutionary approach. Open Microbiol J 7:53–58

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mascher T (2013) Signaling diversity and evolution of extracytoplasmic function (ECF) sigma factors. Curr Opin Microbiol 16:148–155

    Article  CAS  PubMed  Google Scholar 

  27. Matsuyama S, Mizuno T, Mizushima S (1986) Interaction between two regulatory proteins in osmoregulatory expression of ompF and ompC genes in Escherichia coli: a novel ompR mutation suppresses pleiotropic defects caused by an envZ mutation. J Bacteriol 168:1309–1314

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Mutalik VK, Nonaka G, Ades SE et al (2009) Promoter strength properties of the complete sigma E regulon of Escherichia coli and Salmonella enterica. J Bacteriol 191:7279–7287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Medeiros AA, O’Brien TF, Rosenberg EY et al (1987) Loss of OmpC porin in a strain of Salmonella typhimurium causes increased resistance to cephalosporins during therapy. J Infect Dis 156:751–757

    Article  CAS  PubMed  Google Scholar 

  30. Mortimer PG, Piddock LJ (1993) The accumulation of five antibacterial agents in porin-deficient mutants of Escherichia coli. J Antimicrob Chemother 32:195–213

    Article  CAS  PubMed  Google Scholar 

  31. Nestorovich EM, Danelon C, Winterhalter M et al (2002) Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc Natl Acad Sci USA 99:9789–9794

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Nikaido H, Rosenberg EY (1983) Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153:241–252

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59:126–141

    Article  CAS  PubMed  Google Scholar 

  35. Rhodius VA, Suh WC, Nonaka G et al (2006) Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 4:e2

    Article  PubMed Central  PubMed  Google Scholar 

  36. Rhodius VA, Mutalik VK (2010) Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, sigmaE. Proc Natl Acad Sci USA 107:2854–2859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ricci V, Blair JM, Piddock LJ (2014) RamA, which controls expression of the MDR efflux pump AcrAB-TolC, is regulated by the Lon protease. J Antimicrob Chemother 69:643–650

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sheng XM, Huang XX, Mao LX (2009) Preparation of Salmonella enterica serovar Typhi genomic DNA microarrays for gene expression profiling analysis. Prog Biochem Biophys 36:206–212

    Article  CAS  Google Scholar 

  39. Zhang H, Sheng X, Xu S et al (2009) Global transcriptional response of Salmonella enterica serovar Typhi to anti-z66 antiserum. FEMS Microbiol Lett 298:51–55

    Article  CAS  PubMed  Google Scholar 

  40. Zheng J, Cui S, Meng J (2009) Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fluoroquinolone-resistant Salmonella Typhimurium. J Antimicrob Chemother 63:95–102

    Article  CAS  PubMed  Google Scholar 

  41. Xue X, Tomasch J, Sztajer H (2010) The delta subunit of RNA polymerase, RpoE, is a global modulator of Streptococcus mutans environmental adaptation. J Bacteriol 192:5081–5092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81572032), Jiangsu Key Laboratory of Medical Science and Laboratory Medicine (JSKLM-2014-015) and the startup fund of the Second Affiliated Hospital of Soochow University (No. SDFEYGJ1301). This study was partially supported by a grant (to B.N.K.) from the National Institutes of Health (1R01AI090155).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Du.

Additional information

Xiaofang Xie and Haifang Zhang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Zhang, H., Zheng, Y. et al. RpoE is a Putative Antibiotic Resistance Regulator of Salmonella enteric Serovar Typhi. Curr Microbiol 72, 457–464 (2016). https://doi.org/10.1007/s00284-015-0983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0983-7

Keywords

Navigation