Skip to main content
Log in

Pseudomonas putida Stimulates Primordia on Agaricus bitorquis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Casing layer is one step of Agaricus bisporus cultivation where there is a competitive environment with a high number of microorganisms and diversity interacting with mycelia. It is suggested that a minimal community of these microorganisms would be necessary to stimulate fructification. However, A. bisporus is not able to produce primordia in sterile casing layers or Petri dishes. Thus, the objective of this study was to characterize bacterial microbiota of casing layers from A. bisporus cultivation, isolate, identify and characterize the bacteria responsible for the stimulation of primordium and their action mechanism using Agaricus bitorquis as a primordium stimulation model. Bacterial and Pseudomonas spp. communities of different casing layers of A. bisporus cultivation were collected and quantified. It was concluded that Pseudomonas spp. corresponds to 75–85 % of bacterial population of the casing layers in A. bisporus cultivation and among those 12 % are Pseudomonas putida. Four biochemical assays were used to identify P. putida. In vitro primordium stimulation of living P. putida and non-living bacterial suspensions, after chemical or physical treatments, was tested using A. bitorquis as a primordium stimulation model. Primordium stimulation assay was registered by photographs, and micrographs of vertical cut of primordium were registered by scanning electron microscope. Interaction of living P. putida with A. bitorquis mycelia is capable of stimulating primordial instead of non-living bacterial suspensions. Stimulation of A. bitorquis primordia does not imply or is related to mycelial growth inhibition, but a hierarchical relation of primordium succession and development is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16(7):835–843. doi:10.1111/ele.12115

    Article  PubMed  Google Scholar 

  2. Brennerova MV, Crowley DE (1994) Direct detection of rhizosphere-colonizing Pseudomonas sp. using an Escherichia coli rRNA promoter in a Tn7-lux system. FEMS Microbiol Ecol 14(4):319–330. doi:10.1111/j.1574-6941.1994.tb00117.x

    Article  CAS  Google Scholar 

  3. Carlone GM, Valadez MJ, Pickett MJ (1982) Methods for distinguishing Gram-positive from Gram-negative bacteria. J Clin Microbiol 16(6):1157–1159

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Colauto NB, Eira AF (1998) Quantitative evaluation of the bacterium community in the casing layer on Agaricus bisporus. Energ Agric 13(2):15–26

    Google Scholar 

  5. Couvy J (1972) Étude de l’induction de la fructification chez Agaricus bisporus (Lange) Sing (= Psalliota hortensis Cke): action du glucose. C R Hebd Séances Acad Sci 274:2475–2477

    CAS  Google Scholar 

  6. Cresswell PA, Hayes WA (1978) Further investigations on the bacterial ecology of the casing layer. Mushroom Sci 11:347–359

    Google Scholar 

  7. Curto S, Favelli F (1972) Stimulative effect of certain micro-organisms (bacteria, yeasts, microalgae) upon fruit-body formation of Agaricus bisporus (Lange) Sing. Mushroom Sci 6:67–74

    Google Scholar 

  8. Eger G (1972) Experiments and comments on the action of bacteria on sporophore initiation in Agaricus bisporus. Mushroom Sci 8:719–725

    Google Scholar 

  9. Eger G (1962) The “Halbschalentest”, a simple method for testing casing materials. Mushroom Growers Assoc Bull 148:159–168

    Google Scholar 

  10. Eger G (1963) Untersuchungen zur fruchtkörperbildung des kulturchampignons. Mushroom Sci 5:314–320

    Google Scholar 

  11. Fermor T, Lincoln S, Noble R, Dobrovin-Pennington A, Colauto N (2000) Microbiological properties of casing. In: Van Griensven LJLD (ed) Science and cultivation of edible fungi. CRC, Maastricht, pp 447–454

    Google Scholar 

  12. Fett WF, Wells JM, Cescutti P, Wijey C (1995) Identification of exopolysaccharides produced by fluorescent Pseudomonads associated with commercial mushroom (Agaricus bisporus) production. Appl Environ Microbiol 61(2):513–517

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Flegg PB, Wood DA (1985) Growth and fruiting. In: Flegg PB, Spencer DM, Wood DA (eds) The biology and technology of the cultivated mushroom. Wiley, Chichester, pp 141–177

    Google Scholar 

  14. Gaze R (1996) Pegging the variables: casing. Mushroom J 561:24

    Google Scholar 

  15. Hayes WA (1981) Interrelated studies of physical, chemical and biological factors in casing soils and relationships with productivity in commercial culture of A. bisporus Lange (Pilat). Mushroom Sci 11:103–129

    CAS  Google Scholar 

  16. Hayes WA (1972) Nutritional factors in relation to mushroom production. Mushroom Sci 8:663–674

    CAS  Google Scholar 

  17. Hayes WA (1974) The casing layer. Mushroom Growers’ Association, Leeds

    Google Scholar 

  18. Hayes WA, Nair NG (1974) Effects of volatile metabolic by-products of mushroom mycelium on the ecology of the casing layer. Mushroom Sci 9:259–268

    Google Scholar 

  19. Hume DP, Hayes WA (1972) The production of fruit-body primordia in Agaricus bisporus (Lange) Sing. on agar media. Mushroom Sci 8:527–532

    Google Scholar 

  20. Jain VB, Singh RN, Singh SP (1983) Selection of casing medium for cultivation of white button mushroom. Progress Hortic 15(1–2):126–128

    Google Scholar 

  21. Klein PH (1996) Microbiology, 3rd edn. Times Mirror, Dubuque

    Google Scholar 

  22. Lambert EB (1938) Principles and practice of mushroom growing. Bot Rev 4:397–426

    Article  CAS  Google Scholar 

  23. Long PE, Jacobs L (1974) Aseptic fruiting of the cultivated mushroom, Agaricus bisporus. Trans Br Mycol Soc 63(1):99–107

    Article  Google Scholar 

  24. Long PE, Jacobs L (1969) Some observations on CO2 and sporophore initiation in the cultivated mushroom. In: Mushroom science VII. Proceedings of the international congress on mushroom science, Hamburg, pp 373–384

  25. Maccanna C (1984) Comercial mushroom production. Foras Taluntais, Dublin

    Google Scholar 

  26. Miller N, Gillespie JB, Doyle OPE (1995) The involvement of microbiological components of peat based casing materials in fructification of Agaricus bisporus. Mushroom Sci 14:313–321

    Google Scholar 

  27. Nair MC, Gokulapalan CDL (1994) Mushroom biotechnology. Scientific Publishers, Jodhpur

    Google Scholar 

  28. O’Donoghue-Maguire DC, Ryan JP (1991) Influences of a wide range of bacteria, actinomycetes and fungi on mycelial growth of Agaricus bisporus (Lange), Sing and special fruiting requeriment of A. bisporus. In: Maher MJ (ed) Science and cultivation of edible fungi. Balkema, Rottedam, pp 753–759

    Google Scholar 

  29. Peerally A (1981) A petri-plate agar technique for obtaining primordia in Agaricus bisporus (Lange) Sing. Mushroom Sci 8:153–158

    Google Scholar 

  30. Peerally A (1978) Sporophore initiation in Agaricus bisporus and Agaricus bitorquis in relation to bacteria and activated charcoal. Mushroom Sci 11:611–639

    Google Scholar 

  31. Rainey PB, Cole ALJ (1987) Evidence for the involvement of plasmids in sporophore initiation and development in Agaricus bisporus. Dev Crop Sci 10:235–248

    Article  Google Scholar 

  32. Rainey PB, Cole ALJ, Fermor TR, Wood DA (1990) A model system for examining involvement of bacteria in basidiome initiation of Agaricus bisporus. Mycol Res 94(2):191–195. doi:10.1016/S0953-7562(09)80612-6

    Article  Google Scholar 

  33. Raper CA (1976) Sexuality and the life-cycle of the edible wild Agaricus bitorquis. J Gen Microbiol 105:135–151. doi:10.1099/00221287-95-1-54

    Article  Google Scholar 

  34. Reddy MS, Patrick ZA (1990) Effect of bacteria associated with mushroom compost and casing materials on basidiomata formation in Agaricus bisporus. Can J Plant Pathol 12(3):236–242. doi:10.1080/07060669009500993

    Article  Google Scholar 

  35. Reijnders AFM (1954) Le development des carpophores dans le genre Agaricus. Mushroom Sci 2:11–15

    Google Scholar 

  36. Samson R, Houdeau G, Khanna P, Guillaumes J, Olivier JM (1987) Variability of fluorescent Pseudomonas populations in compost and casing soils used for mushroom cultures. Dev Crop Sci 10:19–25

    Article  Google Scholar 

  37. Smith JF, Love ME (1989) A tropical Agaricus with commercial potential. Mushroom Sci 12:305–315

    Google Scholar 

  38. Stanier RY, Pallerroni NJ, Doudoroff M (1966) The aerobic Pseudomonas, a taxonomic study. J Gen Microbiol 43(2):159–271

    Article  CAS  PubMed  Google Scholar 

  39. Verbeke MN, Overstyns A (1991) Interralationships between activated charcoal, carbon dioxide, oxalate and iron chemistry for fructification of Agaricus bisporus. In: Maher MJ (ed) Science and cultivation of edible fungi. Balkema, Rottedam, pp 737–746

    Google Scholar 

  40. Visscher HR (1978) Fructification of Agaricus bisporus (Lge.) Imb. in relation to the relevant microflora in the casing soil. Mushroom Sci 10:641–664

    Google Scholar 

  41. White D (1995) The physiology and biochemistry of prokaryotes. Oxford University, Oxford

    Google Scholar 

  42. Wood DA (1976) Primordium formation in axenic cultures of Agaricus bisporus (Lange) Sing. J Gen Microbiol 95:313–323

    Article  Google Scholar 

  43. Wood DA (1978) Studies on primordium initiation in Agaricus bisporus and Agaricus bitorquis (syn. edulis). Mushroom Sci 10:565–586

    Google Scholar 

Download references

Acknowledgments

The authors thank the National Council of Technological and Scientific Development (CNPq) for the doctorate fellowship, Paulista State University (UNESP) and the Horticulture Research International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson B. Colauto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Augusto F. Eira—in memoriam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colauto, N.B., Fermor, T.R., Eira, A.F. et al. Pseudomonas putida Stimulates Primordia on Agaricus bitorquis . Curr Microbiol 72, 482–488 (2016). https://doi.org/10.1007/s00284-015-0982-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0982-8

Keywords

Navigation