Skip to main content
Log in

Lysobacter chengduensis sp. nov. Isolated from the Air of Captive Ailuropoda melanoleuca Enclosures in Chengdu, China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A novel bacterial strain, designated as CF21T, was isolated from the air of Ailuropoda melanoleuca enclosures in China. Cells were gram-negative, aerobic, non-motile, and rod shaped. Strain CF21T grew at 10–40 °C (optimum 28–30 °C) and pH 6.0–9.0 (optimum pH 7.0–8.0) and in the presence of NaCl concentrations ranging from 0.0 % (w/v) to 2.0  % (optimum 0.0–1.0 %). 16SrRNA gene sequence analysis indicated that strain CF21T belonged to genus Lysobacter within class Gammaproteobacteria and was most closely related to Luteimonas dalianensi OB44-3T (95.8 % similarity), Lysobacter ruishenii CTN-1T (95.1 %), Lysobacter spongiicola KMM329T (94.8 %), and Lysobacter daejeonensis GH1-9T (94.6 %). The genomic G+C DNA content was 68.72 mol%. Major cellular fatty acids of CF21T were iso-C16:0 (30.22 %), iso-C15:0 (25.70 %), and the sum of 10-methyl C16 : 0 and/or iso-C17 : 1ω9c (21.94 %). The prominent isoprenoid quinone was ubiquinone 8 (Q-8). Primary polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and an unknown phospholipid. DNA sequence relatedness between strain CF21T and L. ruishenii CTN-1T was 56 %, which was clearly below the 70 % threshold for prokaryotic species delineation. These analyses indicated that CF21T is a novel member of genus Lysobacter, for which the name Lysobacter chengduensis sp. nov. is proposed. The type strain is CF21T (=CGMCC1.15145T = DSM 100306T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aslam Z, Yasir M, Jeon CO et al (2009) Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int J Syst Evol Microbiol 59:675–680

    Article  PubMed  CAS  Google Scholar 

  2. Bae HS, Im WT, Lee ST (2005) Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol 55:1155–1161

    Article  PubMed  CAS  Google Scholar 

  3. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    PubMed  CAS  PubMed Central  Google Scholar 

  4. O’Hara CM (2006) Evaluation of the Phoenix 100 ID/AST system and NID Panel for identification of enterobacteriaceae, vibrionaceae, and commonly isolated nonenteric gram-negative bacilli. J Clin Microbiol 44:928–933

    Article  PubMed  PubMed Central  Google Scholar 

  5. Choi JH, Seok JH, Cha JH et al (2014) Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 64:2193–2197

    Article  PubMed  CAS  Google Scholar 

  6. Christensen P, Cook FD (1978) Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393

    Article  Google Scholar 

  7. Collins MD (1985) Isoprenoid quinone analysis in classification and identification. In: Minnikin MGDE (ed) Chemical methods in bacterial systematics. Academic Press, London, pp 267–287

    Google Scholar 

  8. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  PubMed  CAS  Google Scholar 

  10. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  11. Fukuda W, Kimura T, Araki S et al (2013) Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol 63:3313–3318

    Article  PubMed  CAS  Google Scholar 

  12. Greisen K, Loeffelholz M, Purohit A et al (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32:335–351

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Guindon S, Lethiec F, Duroux P et al (2005) PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33(Web Server issue):W557–W559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Islam MT, Hashidoko Y, Deora A et al (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  PubMed  CAS  Google Scholar 

  16. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  17. Liu M, Liu Y, Wang Y et al (2011) Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 61:433–437

    Article  PubMed  CAS  Google Scholar 

  18. Luo G, Shi Z, Wang G (2012) Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 62:1659–1665

    Article  PubMed  CAS  Google Scholar 

  19. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Method Enzymol 12B:195–206

    Article  Google Scholar 

  20. Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Method 2:233–241

    Article  CAS  Google Scholar 

  21. Park JH, Kim R, Aslam Z et al (2008) Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 58:387–392

    Article  PubMed  CAS  Google Scholar 

  22. Romanenko LA, Uchino M, Tanaka N et al (2008) Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol 58:370–374

    Article  PubMed  CAS  Google Scholar 

  23. Saddler GS, Bradbury JF (2005) Family I. Xanthomonadaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology (the proteobacteria), part B (the gammaproteobacteria), vol 2, 2nd edn. Springer, New York, p 63

    Chapter  Google Scholar 

  24. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  25. Srinivasan S, Kim MK, Sathiyaraj G et al (2010) Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1543–1547

    Article  PubMed  CAS  Google Scholar 

  26. Stackebrandt E, Frederiksen W, Garrity GM et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    PubMed  CAS  Google Scholar 

  27. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Thompson JD, Gibson TJ, Plewniak F et al (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202

    Article  CAS  Google Scholar 

  30. Wang GL, Wang L, Chen HH et al (2011) Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int J Syst Evol Microbiol 61:674–679

    Article  PubMed  CAS  Google Scholar 

  31. Weon HY, Kim BY, Baek YK et al (2006) Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 56:947–951

    Article  PubMed  CAS  Google Scholar 

  32. Ye XM, Chu CW, Shi C et al (2015) Lysobacter caeni sp. nov., isolated from the sludge of pesticide manufacturing factory. Int J Syst Evol Microbiol 65:845–850

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Jian-Dong Jiang of Nanjing Agricultural University for providing L. ruishenii CTN-1T and L. daejeonensis GH1-9T. This work was supported by the National Science and Technology Support Project (2012BAC01B06) and Chengdu Giant Panda Breeding Research Foundation (CPF2010-06), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qigui Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2015_921_MOESM1_ESM.docx

Polar lipids analyses of strain Lysobacter chengduensis CF21T were carried out using a two-dimensional TLC method. PE, Phosphatidylethanolamine; PG, phosphatidylglycerol; DPG, diphosphatidylglycerol, and UPL, an unknown phospholipid. Supplementary material 1 (DOCX 612 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, C., Xi, L., She, R. et al. Lysobacter chengduensis sp. nov. Isolated from the Air of Captive Ailuropoda melanoleuca Enclosures in Chengdu, China. Curr Microbiol 72, 88–93 (2016). https://doi.org/10.1007/s00284-015-0921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0921-8

Keywords

Navigation