Skip to main content
Log in

Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (l-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon–nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahuja A, Ghosh SB, D’Souza SF (2007) Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization. Bioresour Technol 98:3408–3411

    Article  PubMed  CAS  Google Scholar 

  2. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotechnol Adv 27:489–501

    Article  PubMed  CAS  Google Scholar 

  3. Beever RE, Burns DJW (1980) Phosphorus uptake, storage and utilization by fungi. Adv Bot Res 8:127–219

    Article  CAS  Google Scholar 

  4. Brock TD, Madigan MT, Martinko JM, Parker J (1994) Biology of microorganisms, 7th edn. Prentice, New Jersey

    Google Scholar 

  5. Chai B, Wu Y, Liu P, Gao M (2011) Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine. J Basic Microb 51:5–14

    Article  CAS  Google Scholar 

  6. Della Mónica IF, Stefanoni Rubio PJ, Cina RP, Recchi M, Godeas AM, Scervino JM (2014) Effects of the phosphate-solubilizing fungus Talaromyces flavus on the development and efficiency of the Gigaspora rosea-Triticum aestivum symbiosis. Symbiosis 64:25–32

    Article  Google Scholar 

  7. Gerretsen FC (1948) The influence of microorganisms on the phosphorus uptake by plant. Plant Soil 1:51–81

    Article  CAS  Google Scholar 

  8. Guimarães LHS, Terenzi HS, Jorge JA, Leone FA, Polizeli MLTM (2004) Characterization and properties of acid phosphatases with phytase activity produced by Aspergillus caespitosus. Biotechnol Appl Bioc 40:201–207

    Article  Google Scholar 

  9. Gyaneshwar G, Kumar N, Parekh LJ (1998) Effect of buffering on the phosphate-solubilizing ability of microorganisms P. J Microbiol Biotechnol 14:669–673

    Article  CAS  Google Scholar 

  10. Haas H, Redl B, Leitner E, Stöffler G (1991) Penicillium chrysogenum extracellular acid phosphatase: purification and biochemical characterization. Biochim Biophys Acta 1074:392–397

    Article  PubMed  CAS  Google Scholar 

  11. Hidayat BJ, Eriksen NT, Wiebe MG (2006) Acid phosphatase production by Aspergillus niger N402A in continuous flow culture. FEMS Microbiol Lett 254:324–331

    Article  PubMed  CAS  Google Scholar 

  12. Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24:389–395

    Article  Google Scholar 

  13. Johnson WC, Lindsey AJ (1939) An improved universal buffer. Analyst 64:490–492

    Article  CAS  Google Scholar 

  14. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi- current perspective. Arch Agro Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  15. Kucey RMN, Janzen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  16. Glenn CR, Garrison RE (2003) Phosphorites. In: Middleton GV (ed) Encyclopedia of sediments and sedimentary rocks: Encyclopedia of Earth Sciences Series. Kluwer Academic Publishers, Dordrecht, pp 519–526

    Google Scholar 

  17. Nahas E (2002) Microrganismos do solo produtores de fosfatases em diferentes sistemas agrícolas. Bragantia 61:267–275

    Article  CAS  Google Scholar 

  18. Nahas E (2007) Phosphate solubilizing microorganisms: Effect of carbon, nitrogen and phosphorus sources. In: Velazquez E, Rodriguez-Barrueco C (eds) First international meeting on microbial phosphate solubilization. Dordrecht, pp 111–115

  19. Nahas E, Centurion JF, Assis LC (1994) Microganismos solubilizadores de fosfato e produtores de fosfatases de vários solos. R bras Ci Solo 18:43–48

    CAS  Google Scholar 

  20. Nahas E, Terenzi HF, Rossi A (1982) Effect of carbon source and pH on the production and secretion of acid phosphatase (EC 3.1.3.2) and alkaline phosphatase (EC 3.1.3.1) in Neurospora crassa. J Gen Microbiol 128:2017–2021

    CAS  Google Scholar 

  21. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    Article  PubMed  CAS  Google Scholar 

  22. Pawar VC, Thaker VS (2009) Acid phosphatase and invertase activities of Aspergillus niger. Mycoscience 50:323–330

    Article  CAS  Google Scholar 

  23. Rodriguez MA (2004) Hongos del suelo antagonistas de Sclerotinia sclerotiorum. Selección y estudio de potenciales agentes de biocontrol. PhD thesis, Universidad de Buenos Aires, Argentina

  24. Scervino JM, Prieto Mesa M, Della Mónica I, Recchi M, Sarmiento Moreno N, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphates salts solubilization. Biol Fert Soils 46:755–763

    Article  CAS  Google Scholar 

  25. Seshadri S, Ignacimuthu S, Lakshminarasimhan C (2004) Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains. Chem Eng Commun 191:1043–1052

    Article  CAS  Google Scholar 

  26. Stosz SK, Fravel DR, Roberts DP (1996) In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae. Appl Environ Microb 62:3183–3186

    CAS  Google Scholar 

  27. Straker CJ, Mitchell DT (1986) The activity and characterization of acid phosphatases in endomycorrhizal fungi of the Ericaceae. New Phytol 104:243–256

    Article  CAS  Google Scholar 

  28. Vinopal RT, Romano AH (2000) Carbohydrate synthesis and metabolism. In: Lederberg J (ed) Encyclopedia of microbiology, vol 1, 2nd edn. Academic, San Diego, pp 647–668

    Google Scholar 

  29. Wenzel CL, Ashford AE, Summerell BA (1994) Phosphate-solubilizing bacteria associated with proteoid roots of seedlings of waratah [Telopea speciosissima (Sm.) R.Br.]. New Phytol 128:487–496

    Article  Google Scholar 

  30. Yadav J, Verma JP, Tiwari KN (2011) Solubilization of tricalcium phosphate by fungus Aspergillus niger at different carbon source and salinity. Trends Appl Sci Res 6:606–613

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following institutions: Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Scervino.

Ethics declarations

Conflict of interest

No conflict of interest declared.

Statement of Human and Animal Rights

Neither human nor animals are used in this study.

Additional information

P. J. Stefanoni Rubio and M. S. Godoy have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanoni Rubio, P.J., Godoy, M.S., Della Mónica, I.F. et al. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus . Curr Microbiol 72, 41–47 (2016). https://doi.org/10.1007/s00284-015-0914-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0914-7

Keywords

Navigation