Skip to main content
Log in

A Novel Separation Method of Microthrix parvicella Filaments from Activated Sludge by a Hydrophobic Plate

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop a novel method to separate Microthrix parvicella (M. parvicella) filaments from activated sludge easily and quickly, as there are a few difficulties in the isolation of M. parvicella filaments, such as complicated isolation process, time consuming, etc. In this work, a series of hydrophobic plate with and without microchannels have been prepared for the separation of M. parvicella filaments. The results showed that the presence of microchannels and hydrophobic property of the hydrophobic plates affected the separation efficiency of M. parvicella significantly. The scanning electron microscope and Keyence Digital Microscope analysis results showed that the diameter of microchannels was similar to the width of M. parvicella filament, which was beneficial for the fastening of M. parvicella filaments on the plate. The hydrophobic property of the prepared plates was tested by contact angle of water droplets, and the results displayed that the polydimethylsiloxane (PDMS) plate possessed the highest contact angle compared with that of other plates, like polymethylmethacrylate, polystyrene plate, and PDMS plate with no hydrophobic microchannels. Thus, it was concluded that the high separation efficiency of PDMS plates to M. parvicella filaments was due to its best hydrophobic property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Knaf T, Schade M, Lemmer H, Benz R (2013) Specific binding of aluminium and iron ions to a cation-selective cell wall channel of Microthrix parvicella. Environ Microbiol 15:2775–2786

    CAS  PubMed  Google Scholar 

  2. Kocerba-Soroka W, Fiałkowska E, Pajdak-Stóset A, Klimek B, Kowalska E, Drzewicki A, Salvadó H, Fyda J (2013) The use of rotifers for limiting filamentous bacteria Type 021N, a bacteria causing activated sludge bulking. Water Sci Technol 67:1557–1563

    Article  CAS  PubMed  Google Scholar 

  3. Vanysacker L, Denis C, Roels J, Verhaeghe K, Vankelecom IFJ (2014) Development and evaluation of a TaqMan duplex real-time PCR quantification method for reliable enumeration of Candidatus Microthrix. J Microbiol Methods 97:6–14

    Article  CAS  PubMed  Google Scholar 

  4. Zheng S, Sun J, Han H (2011) Effect of dissolved oxygen changes on activated sludge fungal bulking during lab-scale treatment of acidic industrial wastewater. Environ Sci Technol 45:8928–8934

    Article  CAS  PubMed  Google Scholar 

  5. Kumari SKS, Marrengane Z, Bux F (2009) Application of quantitative RT-PCR to determine the distribution of Microthrix parvicella in full-scale activated sludge treatment systems. Appl Microbiol Biotechnol 83:1135–1141

    Article  CAS  PubMed  Google Scholar 

  6. Blackall LL, Harbers AE, Greenfield P, Hayward A (1988) Actinomycete scum problems in Australian activated sludge plants. Water Sci Technol 20:493–495

    CAS  Google Scholar 

  7. Blackbeard J, Ekama G, Marais G (1986) A survey of filamentous bulking and foaming in activated-sludge plants in South Africa. Water Pollut Control 85:90–100

    CAS  Google Scholar 

  8. Eikelboom DH, Andreadakis A, Andreasen K (1998) Survey of filamentous populations in nutrient removal plants in four European countries. Water Sci Technol 37:281–289

    Article  CAS  Google Scholar 

  9. Martins AMP, Pagilla K, Heijnen JJ, van Loosdrecht MCM (2004) Filamentous bulking sludge: a critical review. Water Res 38:793–817

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Qi R, Liu M, Li Q, Bao H, Li Y, Wang S, Tandoi V, Yang M (2014) The potential role of ‘Candidatus Microthrix parvicella’ in phosphorus removal during sludge bulking in two full-scale enhanced biological phosphorus removal plants. Water Sci Technol 70:367–375

    Article  CAS  PubMed  Google Scholar 

  11. Noutsopoulos C, Mamais D, Andreadakis A (2012) A hypothesis on Microthrix parvicella proliferation in biological nutrient removal activated sludge systems with selector tanks. FEMS Microbiol Ecol 80:380–389

    Article  CAS  PubMed  Google Scholar 

  12. Rossetti S, Tomei MC, Nielsen PH, Tandoi V (2005) “Microthrix parvicella”, a filamentous bacterium causing bulking and foaming in activated sludge systems: a review of current knowledge. FEMS Microbiol Rev 29:49–64

    Article  CAS  PubMed  Google Scholar 

  13. Tandoi V, Rossetti S, Blackall LL, Majone M (1998) Some physiological properties of an Italian isolate of “Microthrix parvicellai”. Water Sci Technol 37:1–8

    Article  CAS  Google Scholar 

  14. Nielsen J, Mikkelsen L, Nielsen P (2001) In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge. Water Sci Technol 43:97–103

    CAS  PubMed  Google Scholar 

  15. van Veen WL (1973) Bacteriology of activated sludge, in particular the filamentous bacteria. Antonie Van Leeuwenhoek 39:189–205

    Article  PubMed  Google Scholar 

  16. Rossetti S, Christensson C, Blackall LL, Tandoi V (1997) Phenotypic and phylogenetic description of an Italian isolate of “Microthrix parvicella”. J Appl Microbiol 82:405–410

    Article  CAS  PubMed  Google Scholar 

  17. Blackall LL, Seviour EM, Cunningham MA, Seviour RJ, Hugenholtz P (1995) “Microthrix parvicella” is a novel, deep branching member of the actinomycetes subphylum. Syst Appl Microbiol 17:513–518

    Article  Google Scholar 

  18. Blackall LL, Stratton H, Bradford D, delDot T, Sjorup C, Seviour EM, Seviour RJ (1996) “Candidatus Microthrix parvicella”, a filamentous bacterium from activated sludge sewage treatment plants. Int J Syst Bacteriol 46:344–346

    Article  CAS  PubMed  Google Scholar 

  19. Eikelboom D (1975) Filamentous organisms observed in activated sludge. Water Res 9:365–388

    Article  Google Scholar 

  20. Seviour E, Williams C, DeGrey B, Soddell J, Seviour R, Lindrea K (1994) Studies on filamentous bacteria from Australian activated sludge plants. Water Res 28:2335–2342

    Article  Google Scholar 

  21. Slijkhuis H (1983) Microthrix parvicella, a filamentous bacterium isolated from activated sludge: cultivation in a chemically defined medium. Appl Environ Microbiol 46:832–839

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Eikelboom D, Van Buijsen H (1981) Microscopic sludge investigation manual. TNO Research Institute for Environmental Hygiene, Delft

    Google Scholar 

  23. Pernthaler J, Glöckner FO, Schönhuber W, Amann R (2001) Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. In: Paul J (ed) Methods in microbiology, vol. 30. Academic Press Ltd., London

    Google Scholar 

  24. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Erhart R, Bradford D, Seviour RJ, Amann R, Blackall LL (1997) Development and use of fluorescent in situ hybridization probes for the detection and identification of “Microthrix parvicella” in activated sludge. Syst Appl Microbiol 20:310–318

    Article  Google Scholar 

  26. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, Chen Y (2005) Artificial lotus leaf by nanocasting. Langmuir 21:8978–8981

    Article  CAS  PubMed  Google Scholar 

  27. Hamit-Eminovski J, Eskilsson K, Arnebrant T (2010) Change in surface properties of Microthrix parvicella upon addition of polyaluminium chloride as characterized by atomic force microscopy. Biofouling 26:323–331

    Article  PubMed  Google Scholar 

  28. Jenkins D, Richard MG, Daigger GT (2004) Manual on the causes and control of activated sludge bulking, foaming, and other solids separation problems. IWA Publishing, London

    Google Scholar 

  29. Zhang X, Wang L, Levänen E (2013) Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv 3:12003–12020

    Article  CAS  Google Scholar 

  30. Marshall KC (1985) Mechanisms of bacterial adhesion at solid-water interfaces. In: Savage DC, Fletcher M (eds) Bacterial adhesion. Springer, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51178289, 21402139), Technological Development Foundation Program for College in Tianjin City (20140518), Tianjin Construction Committee Science Technology Project (2014-23), and Tianjin Natural Science Foundation (14JCTPJC00480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuening Fei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, X., Li, S., Cao, L. et al. A Novel Separation Method of Microthrix parvicella Filaments from Activated Sludge by a Hydrophobic Plate. Curr Microbiol 71, 465–470 (2015). https://doi.org/10.1007/s00284-015-0860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0860-4

Keywords

Navigation