Skip to main content

Advertisement

Log in

Sanitizing Effect of Ethanol Against Biofilms Formed by Three Gram-Negative Pathogenic Bacteria

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Sanitizing effect of ethanol on a Yersinia enterocolitica biofilm was evaluated in terms of biomass removal and bactericidal activity. We found that 40 % ethanol was most effective for biofilm biomass removal; however, no significant difference was observed in bactericidal activity between treatment with 40 and 70 % ethanol. This unexpected low ethanol concentration requirement for biomass removal was confirmed using biofilms of two additional pathogenic bacteria, Aeromonas hydrophila and Xanthomonas oryzae. Although only three pathogenic Gram-negative bacteria were tested and the biofilm in nature was different from the biofilm in this study, the results in this study suggested the possible re-evaluation of the effective sanitizing ethanol concentration 70 %, which is the concentration commonly employed for sanitization, on bacteria in a biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdel-Haq NM, Asmar BI, Abuhammour WM, Brown WJ (2000) Yersinia enterocolitica infection in children. Pediatr Infect Dis J 19:954–958

    Article  CAS  PubMed  Google Scholar 

  2. Ali Y, Dolan MJ, Fendler EJ, Larson EL (2001) Alcohols. In: Block SS (ed) Disinfection, sterilization, and preservation, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 229–253

    Google Scholar 

  3. Alves FRF, Silva MG, Rôças IN, Siqueira JF Jr (2013) Biofilm biomass disruption by natural substances with potential for endodontic use. Braz Oral Res 27:20–25

    Article  PubMed  Google Scholar 

  4. Aumeran C, Guyot P, Boisnoir M, Robin-Hennequin C, Vidal M, Forestier C, Traore O, Lesens O (2013) Activity of ethanol and daptomycin lock on biofilm generated by an in vitro dynamic model using real subcutaneous injection ports. Eur J Clin Microbiol 32:199–206

    Article  CAS  Google Scholar 

  5. Bernal P, Llamas MA (2012) Promising biotechnological applications of antibiofilm exopolysaccharides. Microb Biotechnol 5:670–673

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chaudhury A, Rangineni J (2012) Catheter lock technique: in vitro efficacy of ethanol for eradication of methicillin-resistant staphylococcal biofilm compared with other agents. FEMS Immunol Med Mic 65:305–308

    Article  CAS  Google Scholar 

  7. Corbin A, Pitts B, Parker A, Stewart PS (2011) Antimicrobial penetration and efficacy in an in vitro oral biofilm model. Antimicrob Agents Chemother 55:3338–3344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398

    Article  CAS  PubMed  Google Scholar 

  10. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18

    Article  CAS  PubMed  Google Scholar 

  11. Khalil MAM, Rehman A, Kashif WU, Rangasami M, Tan J (2013) A rare case of Aeromonas hydrophila catheter related sepsis in a patient with chronic kidney disease receiving steroids and dialysis: a case report and review of Aeromonas infections in chronic kidney disease patients. Case Rep Nephrol 2013:1–5

    Article  Google Scholar 

  12. Kim T-J, Young BM, Young GM (2008) Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl Environ Microbiol 74:5466–5474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kirov SM, Castrisios M, Shaw JG (2004) Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun 72:1939–1945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kubiak DW, Gilmore ET, Buckley MW, Lynch R, Marty FM, Koo S (2014) Adjunctive management of central line-associated bloodstream infections with 70 % ethanol-lock therapy. J Antimicrob Chemother 69:1665–1668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. McGarey D, Milanesi L, Foley D, Reyes BJ, Frye L, Lim D (1991) The role of motile aeromonads in the fish disease, ulcerative disease syndrome (UDS). Experientia 47:441–444

    CAS  PubMed  Google Scholar 

  17. McLeod BR, Fortun S, Costerton JW, Stewart PS (1999) Enhanced bacterial biofilm control using electromagnetic fields in combination with antibiotics. In: Ron JD (ed) Methods in enzymology, vol 310. Academic Press, London, pp 656–670

    Google Scholar 

  18. Metcalf SCL, Chambers ST, Pithie AD (2004) Use of ethanol locks to prevent recurrent central line sepsis. J Infect 49:20–22

    Article  PubMed  Google Scholar 

  19. Morton HE (1950) The relationship of concentration and germicidal efficiency of ethyl alcohol. Ann NY Acad Sci 53:191–196

    Article  CAS  PubMed  Google Scholar 

  20. Öncü S (2014) Optimal dosage and dwell time of ethanol lock therapy on catheters infected with Candida species. Clin Nutr 33:360–362

    Article  PubMed  Google Scholar 

  21. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  22. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701

    Article  CAS  PubMed  Google Scholar 

  23. Peters BM, Ward RM, Rane HS, Lee SA, Noverr MC (2013) Efficacy of thanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob Agents Chemother 57:74–82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Qu Y, Istivan TS, Daley AJ, Rouch DA, Deighton MA (2009) Comparison of various antimicrobial agents as catheter lock solutions: preference for ethanol in eradication of coagulase-negative staphylococcal biofilms. J Med Microbiol 58:442–450

    Article  CAS  PubMed  Google Scholar 

  25. Rediske AM, Roeder BL, Nelson JL, Robison RL, Schaalje GB, Robison RA, Pitt WG (2000) Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob Agents Chemother 44:771–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sakthivel N, Mortensen C, Mathur S (2001) Detection of Xanthomonas oryzae pv. oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques. Appl Microbiol Biotechnol 56:435–441

    Article  CAS  PubMed  Google Scholar 

  27. Shen Y, Ronald P (2002) Molecular determinants of disease and resistance in interactions of Xanthomonas oryzae pv. oryzae and rice. Microbes Infect 4:1361–1367

    Article  CAS  PubMed  Google Scholar 

  28. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tsuge S, Furutani A, Fukunaka R, Oku T, Tsuno K, Ochiai H, Inoue Y, Kaku H, Kubo Y (2002) Expression of Xanthomonas oryzae pv. oryzae hrp genes in XOM2, a novel synthetic medium. J Gen Plant Pathol 68:363–371

    Article  CAS  Google Scholar 

  30. Venkatesh M, Rong L, Raad I, Versalovic J (2009) Novel synergistic antibiofilm combinations for salvage of infected catheters. J Med Microbiol 58:936–944

    Article  CAS  PubMed  Google Scholar 

  31. Wong HS, Townsend KM, Fenwick SG, Maker G, Trengove RD, O’Handley RM (2010) Comparative susceptibility of Salmonella Typhimurium biofilms of different ages to disinfectants. Biofouling 26:859–864

    Article  CAS  PubMed  Google Scholar 

  32. Zakhari S (2006) Overview: how is alcohol metabolized by the body? Alcohol Res Health 29:245–254

    PubMed  Google Scholar 

  33. Zhang Y, Wei C, Jiang W, Wang L, Li C, Wang Y, Dow JM, Sun W (2013) The HD-GYP domain protein RpfG of Xanthomonas oryzae pv. oryzicola regulates synthesis of extracellular polysaccharides that contribute to biofilm formation and virulence on rice. PLoS One 8:e59428

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jin-Hyun Kim for generously providing the A. hydrophila strain. This work was supported by a Grant from the Next-Generation BioGreen 21 Program (No. PJ009490), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Jong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, HS., Ham, Y., Shin, K. et al. Sanitizing Effect of Ethanol Against Biofilms Formed by Three Gram-Negative Pathogenic Bacteria. Curr Microbiol 71, 70–75 (2015). https://doi.org/10.1007/s00284-015-0828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0828-4

Keywords

Navigation