Skip to main content

Advertisement

Log in

Characterization and Genomic Analysis of Quinolone-Resistant Delftia sp. 670 Isolated from a Patient Who Died from Severe Pneumonia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Antibiotic-resistant opportunistic pathogens have become a serious concern in recent decades, as they are increasingly responsible for hospital-acquired infections. Here, we describe quinolone-resistant Delftia sp. strain 670, isolated from the sputum of a patient who died from severe pulmonary infection. The draft genome sequence of this strain was obtained by whole-genome shotgun sequencing, and was subjected to comparative genome analysis. Genome analysis revealed that one critical mutation (Ser83Ile in gyrA) might play a decisive role in quinolone resistance. The genome of Delftia sp. strain 670 contains both type II and type VI secretion systems, which were predicted to contribute to the virulence of the strain. Phylogenetic analysis, assimilation tests, and comparative genome analysis indicated that strain 670 differed from the four known Delftia species, suggesting this strain could represent a novel species. Although the study could not determine the strain 670 as the pathogen led to mortality, our findings also presented the pathogenic potential of Delftia species, and the increasing severity of antibiotic resistance among emerging opportunistic pathogens. The whole genome sequencing and comparative analysis improved our understanding of genome evolution in the genus Delftia, and provides the foundation for further study on drug resistance and virulence of Delftia strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  2. Ambler R (1980) The Structure of beta-Lactamases. Philos Trans Royal Soc London B, Biol Sci 289(1036):321–331

    Article  CAS  Google Scholar 

  3. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic acids research:gks1195

  4. Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10(1):421

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chen W-M, Lin Y-S, Sheu D-S, Sheu S-Y (2012) Delftia litopenaei sp. nov., a poly-β-hydroxybutyrate-accumulating bacterium isolated from a freshwater shrimp culture pond. Int J Syst Evol Microbiol 62(Pt 10):2315–2321

    Article  CAS  PubMed  Google Scholar 

  7. Chotikanatis K, Bäcker M, Rosas-Garcia G, Hammerschlag MR (2011) Recurrent intravascular-catheter-related bacteremia caused by Delftia acidovorans in a hemodialysis patient. J Clin Microbiol 49(9):3418–3421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Chun J, Lee J, Bae J, Kim M, Lee J-G, Shin S-Y, Kim YR, Lee K-H (2009) Delftia acidovorans isolated from the drainage in an immunocompetent patient with empyema. Tuberc Respir Dis 67(3):239–243

    Article  Google Scholar 

  9. Del Mar Ojeda-Vargas M, Suárez-Alonso A, De Los Angeles Pérez-Cervantes M, Suárez-Gil E, Monzón-Moreno C (1999) Urinary tract infection associated with Comamonas acidovorans. Clin Microbiol Infect 5(7):443–444

    Article  Google Scholar 

  10. Enoch D, Birkett C, Ludlam H (2007) Non-fermentative Gram-negative bacteria. Int J Antimicrob Agents 29:S33–S41

    Article  CAS  PubMed  Google Scholar 

  11. Hooper DC (2000) Mechanisms of action and resistance of older and newer fluoroquinolones. Clin Infect Dis 31(Supplement 2):S24–S28

    Article  CAS  PubMed  Google Scholar 

  12. Hooper DC (1999) Mechanisms of fluoroquinolone resistance. Drug Resist Updates 2(1):38–55

    Article  CAS  Google Scholar 

  13. Horowitz H, Gilroy S, Feinstein S, Gilardi G (1990) Endocarditis associated with Comamonas acidovorans. J Clin Microbiol 28(1):143–145

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Jørgensen NO, Brandt KK, Nybroe O, Hansen M (2009) Delftia lacustris sp. nov., a peptidoglycan-degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium. Int J Syst Evol Microbiol 59(9):2195–2199

    Article  PubMed  Google Scholar 

  15. Kashiwagi K, Tsuhako MH, Sakata K, Saisho T, Igarashi A, da Costa SOP, Igarashi K (1998) Relationship between spontaneous aminoglycoside resistance in Escherichia coli and a decrease in oligopeptide binding protein. J Bacteriol 180(20):5484–5488

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Khan S, Sistla S, Dhodapkar R, Parija SC (2012) Fatal Delftia acidovorans infection in an immunocompetent patient with empyema. Asian Pacific J trop Biomed 2(11):923–924

    Article  Google Scholar 

  17. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):0955–0964

    Article  CAS  Google Scholar 

  18. Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, Hiasa H, Marks KR, Kerns RJ, Berger JM (2014) Fluoroquinolone-Gyrase-DNA complexes two modes of drug binding. J Biol Chem 289(18):12300–12312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27(1):29–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Pennisi E (2010) Semiconductors inspire new sequencing technologies. Science 327(5970):1190–1191

    Article  CAS  PubMed  Google Scholar 

  21. Perla RJ, Knutson EL (2005) Delftia Acidovorans Bacteremia in an intravenous drug abuser. Am J Infect Dis 1(2):73

    Article  Google Scholar 

  22. Preiswerk B, Ullrich S, Speich R, Bloemberg GV, Hombach M (2011) Human infection with Delftia tsuruhatensis isolated from a central venous catheter. J Med Microbiol 60(2):246–248

    Article  PubMed  Google Scholar 

  23. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103(5):1528–1533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12(1):11–17

    Article  CAS  PubMed  Google Scholar 

  25. Sandkvist M (2001) Type II secretion and pathogenesis. Infect Immun 69(6):3523–3535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Shigematsu T, Yumihara K, Ueda Y, Numaguchi M, Morimura S, Kida K (2003) Delftia tsuruhatensis sp. nov., a terephthalate-assimilating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 53(5):1479–1483

    Article  CAS  PubMed  Google Scholar 

  27. Shin S, Choi J, Ko K (2012) Four cases of possible human infections with Delftia lacustris. Infection 40(6):709–712

    Article  CAS  PubMed  Google Scholar 

  28. Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44(4):344–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tabak O, Mete B, Aydin S, Mandel NM, Otlu B, Ozaras R, Tabak F (2013) Port-related Delftia tsuruhatensis bacteremia in a patient with breast cancer. New Microbiol 36:199–201

    PubMed  Google Scholar 

  30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4(1):41

    Article  PubMed Central  PubMed  Google Scholar 

  32. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S, Li W (2013) Prokaryotic Genome Annotation Pipeline

  33. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Von Graevenitz A (1995) Acinetobacter, Alcaligenes, Moraxella, and other nonfermentative gram-negative bacteria. Manual of clinical microbiology, 6th edn. American Society for Microbiology, Washington, DC, pp 520–532

    Google Scholar 

  35. Watts JL, Clinical, Institute LS (2008) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals: approved standard. National Committee for Clinical Laboratory Standards

  36. Wen A, Fegan M, Hayward C, Chakraborty S, Sly LI (1999) Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al. 1987) gen. nov., comb. nov. Int J Syst Bacteriol 49(2):567–576

    Article  CAS  PubMed  Google Scholar 

  37. Wright GD (2011) Molecular mechanisms of antibiotic resistance. Chem Commun 47(14):4055–4061

    Article  CAS  Google Scholar 

  38. Zheng J, Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66(5):1192–1206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the National Hi-Tech Research and Development (863) Program of China (No. 2012AA022003 and No.2014AA021402), the China Mega-Project on Infectious Disease Prevention (Nos. 2013ZX10004605, 2011ZX10004001, 2013ZX10004607-004 and 2013ZX10004217-002-003) and the State Key Laboratory of Pathogen and BioSecurity Program (No. SKLPBS1113).

Conflict of interest

The authors declare that they have no conflict interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Zhou, Jiankui Chen or Yigang Tong.

Additional information

Huaixing Kang, Xiaomeng Xu and Kaifei Fu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Xu, X., Fu, K. et al. Characterization and Genomic Analysis of Quinolone-Resistant Delftia sp. 670 Isolated from a Patient Who Died from Severe Pneumonia. Curr Microbiol 71, 54–61 (2015). https://doi.org/10.1007/s00284-015-0818-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0818-6

Keywords

Navigation