Skip to main content
Log in

Paenibacillus alba nov., Isolated from Peat Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A white-colored bacterial strain designated J20-6T was isolated from peat soil collected in Russia. Based on the 16S rRNA gene sequence similarities, the strain J20-6T belonged to the genus Paenibacillus, and the closest relatives were Paenibacillus frigoriresistens YIM 016T (98.2 %), Paenibacillus alginolyticus DSM 5050TT (97.9 %), Paenibacillus chondroitinus DSM 5051T (97.4 %), Paenibacillus pocheonensis Gsoil 1138T (96.9 %), and Paenibacillus pectinilyticus RCB-08T (96.6 %). Cells are gram-positive, motile, facultative aerobic, endospore forming, and rod shaped. The cell wall contains MK-7 as the predominant menaquinone and meso-diaminopimelic acid as the diagnostic diamino acid. The major fatty acid is anteiso-C15:0, and the major polar lipids are diphosphatidylglycerol and phosphatidyl-ethanolamine. The DNA G+C content of the strain J20-6T was 49.9 mol %. The phenotypic, chemotaxonomic, and phylogenetic data clearly suggest that the strain J20-6T belongs to the novel member of the genus Paenibacillus, for which the name Paenibacillus alba sp. nov., is proposed. The type strain is J20-6T (=KEMC 7302-005T = JCM 18165T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64:253–260

    Article  CAS  PubMed  Google Scholar 

  2. Ash C, Priest FG, Collins MD (1994) Paenibacillus gen. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no. 51. Int J Syst Bacteriol 44:52–853

    Google Scholar 

  3. Bae JY, Kim KY, Kim JH et al (2010) Paenibacillus aestuarii sp. nov., isolated from an estuarine wetland. Int J Syst Evol Microbiol 60((Pt 3)):644–647

    Article  CAS  PubMed  Google Scholar 

  4. Baek SH, Yi TH, Lee TH et al (2010) Paenibacillus pocheonensis sp. nov., a facultative anaerobe isolated from soil of ginseng field. Int J Syst Evol Microbiol 60:1163–1167

    Article  CAS  PubMed  Google Scholar 

  5. Cappuccino JG, Sherman N (2002) Microbiology: a laboratory manual, 6th edn. Pearson Education, Inc., Benjamin Cummings

    Google Scholar 

  6. Chun J, Lee JH, Jung Y et al (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  7. Collins MD, Jones D (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P, Murray RNG, Costitow RN, Nester EW, Wood WA, Krieg NR, Phillips GH (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 21–33

    Google Scholar 

  9. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229

    Article  Google Scholar 

  10. Felsenstein J (1981) Evolutionary trees from DNA sequences: 239 a maximum likelihood 240 approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  13. Kim KK, Lee KC, Yu H et al (2010) Paenibacillus sputi sp. nov., isolated from the sputum of a patient with pulmonary disease. Int J Syst Evol Microbiol 60((Pt 10)):2371–2376

    Article  CAS  PubMed  Google Scholar 

  14. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    Article  CAS  Google Scholar 

  16. Liu Y, Liu L, Qiu F et al (2010) Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60((Pt 6)):1266–1270

    Article  CAS  PubMed  Google Scholar 

  17. Logan NA, De Clerck E, Lebbe L et al (2004) Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 54:1071–1076

    Article  CAS  PubMed  Google Scholar 

  18. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  19. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167

    Article  CAS  Google Scholar 

  20. MIDI (1999) Sherlock Microbial Identification System Operating Manual, version 3.0. MIDI, Inc., Newark

    Google Scholar 

  21. Ming H, Nie GX, Jiang HC et al (2012) Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 102:297–305

    Article  CAS  PubMed  Google Scholar 

  22. Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  23. Nakamura LK (1987) Bacillus alginolyticus sp. nov. and Bacillus chondroitinus sp. nov., two alginate-degrading species. Int J Syst Bacteriol 37:284–286

    Article  Google Scholar 

  24. Oh HW, Kim BC, Lee KH et al (2008) Paenibacillus camelliae sp. nov., isolated from fermented leaves of Camellia sinensis. J Microbiol 46(5):530–534

    Article  CAS  PubMed  Google Scholar 

  25. Park DS, Jeong WJ, Lee KH et al (2009) Paenibacillus pectinilyticus sp. nov., isolated from the gut of Diestrammena apicalis. Int J Syst Evol Microbiol 59:1342–1347

    Article  CAS  PubMed  Google Scholar 

  26. Roux V, Raoult D (2004) Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54:1049–1054

    Article  CAS  PubMed  Google Scholar 

  27. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  28. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Shida O, Takagi H, Kadowaki K et al (1997) Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47:289–298

    Article  CAS  PubMed  Google Scholar 

  30. Suominen I, Spröer C, Kämpfer P et al (2003) Paenibacillus stellifer sp. nov., a cyclodextrin-producing species isolated from paperboard. Int J Syst Evol Microbiol 53:1369–1374

    Article  CAS  PubMed  Google Scholar 

  31. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128

    Article  CAS  Google Scholar 

  32. Tamura K, Peterson D, Peterson N et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Thompson JD, Gibson TJ, Plewniak F et al (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  34. Yao R, Wang R, Wang D et al (2014) Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 64(Pt 3):805–811

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Kyonggi University‘s Graduate Research Assistantship (2014) and National Research Foundation (NRF-2010-0007473) and Mid-career Researcher Program through grant funded by the Ministry of Science, ICT and Future Planning (MSIP-2013-014978).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Seob Lee.

Additional information

The NCBI GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain J20-6T is JQ966212.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HS., Srinivasan, S. & Lee, SS. Paenibacillus alba nov., Isolated from Peat Soil. Curr Microbiol 70, 865–870 (2015). https://doi.org/10.1007/s00284-015-0795-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0795-9

Keywords

Navigation