Skip to main content

Advertisement

Log in

Isolation and Characterization of T7-Like Lytic Bacteriophages Infecting Multidrug Resistant Pseudomonas aeruginosa Isolated from Egypt

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In this study, two lytic phages designated as ϕPSZ1 and ϕPSZ2 infecting multidrug resistant Pseudomonas aeruginosa were isolated from sewage samples collected in Zagazig, Egypt. Morphological analysis by transmission electron microscopy revealed that both phages belong to the podoviridae family and resembles typical T7-like phages. ϕPSZ1 has a head of about 60 ± 5 nm in diameter with a short tail of 19 ± 2 nm in length, while ϕPSZ2 has a head of about 57 ± 5 nm in diameter with a short tail of 14 ± 2 nm in length. Both phages were shown to be able to infect 13 different P. aeruginosa strains and has no effect on other tested bacteria. In spite of morphological similarity, these phages showed diverged genomic sequences revealed by restriction enzyme digestion analysis. One-step growth curves of bacteriophages revealed eclipse and latent periods of 12 min for ϕPSZ1 and 15 min for ϕPSZ2, respectively, with burst sizes of about 100 per infected cell. Phage treatment prevented the growth of P. aeruginosa for up to 18 h with multiplicity of infection ratios of 1. These results suggest that both phages have a high potential for phage application to control P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abdel-Haliem MEF, Askora A (2013) Isolation and characterization of bacteriophages of Helicobacter pylori isolated from Egypt. Future Virol 8:821–826

    Article  CAS  Google Scholar 

  2. Ackermann HW (2000) Basic phage electron microscopy. Methods Mol Biol 501:113–126

    Article  Google Scholar 

  3. Ackermann HW (2009) Phage classification and characterization. Methods Mol Cell Biol 501:127–140

    CAS  Google Scholar 

  4. Adams MH (1959) Bacteriophages. Interscience Publishers, New York

    Google Scholar 

  5. Bru¨ssow H (2005) Phage therapy: the Escherichia coli experience. Microbiology 151:2133–2140

    Article  Google Scholar 

  6. Bruttin A, Brussow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ceyssens PJ, Lavigne R (2010) Bacteriophages of Pseudomonas. Future Microbiol 5:1041–1055

    Article  PubMed  Google Scholar 

  8. Drenkard E (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219

    Article  CAS  PubMed  Google Scholar 

  9. Driscoll JA, Brody SL, Kollef MH (2007) The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 67:351–368

    Article  CAS  PubMed  Google Scholar 

  10. Giske CG, Monnet DL, Cars O, Carmeli Y (2008) Clinical and economic impact of common multidrug-resistant Gram-negative bacilli. Antimicrob Agents Chemother 52:813–821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Greer GG (2005) Bacteriophage control of foodborne bacteria. J Food Prot 68:1102–1111

    PubMed  Google Scholar 

  12. Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    Article  CAS  PubMed  Google Scholar 

  13. Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73:338–344

    Article  CAS  PubMed  Google Scholar 

  14. Lambert PA (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 95:22–26

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP, Grymonprez B, Jonckx B, Krylov VN, Mesyanzhinov VV, Volckaerta G (2003) The genome of bacteriophage φKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 31(2):49–59

    Article  Google Scholar 

  16. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GAA (2003) Genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310

    Article  CAS  PubMed  Google Scholar 

  17. Matar GM, Chaar MH, Araj GF, Srour Z, Jamaleddine G, Hadi U (2005) Detection of a highly prevalent and potentially virulent strain of Pseudomonas aeruginosa from nosocomial infections in a medical center. BMC Microbiol 5:29–34

    Article  PubMed Central  PubMed  Google Scholar 

  18. McVay CS, Velasquez M, Fralick JA (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother 51:1934–1938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V et al (2009) Quality-controlled small-scale production of a well defined bacteriophage cocktail for use in human clinical trials. PLoS One 4:e4944

    Article  PubMed Central  PubMed  Google Scholar 

  20. Merabishvili M, Verhelst R, Glonti T, Chanishvili N, Krylov V, Cuvelier C, Tediashvili M, Vaneechoutte M (2007) Digitized fluorescent RFLP analysis (RFLP) as a universal method for comparing genomes of culturable dsDNA viruses: application to bacteriophages. Res Microbiol 158:572–581

    Article  CAS  PubMed  Google Scholar 

  21. Merril CR, Scholl D, Adhya S (2006) Phage therapy. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 725–739

    Google Scholar 

  22. Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153:13–18

    Article  PubMed  Google Scholar 

  23. Pajunen M, Kiljunen S, Skurnik M et al (2000) Bacteriophage phi YeO3-12, specific for Yersinia enterocolitica serotype O: 3, is related to coliphages T3 and T7. J Bacteriol 182:5114–5120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Rhoads DD, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A (2009) Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care 18:237–238

    Article  CAS  PubMed  Google Scholar 

  25. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  26. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(358):135–138

    Article  CAS  PubMed  Google Scholar 

  27. Sulakvelidze A (2005) Phage therapy: an attractive option for dealing with antibiotic-resistant bacterial infections. Drug Discov Today 10:807–809

    Article  PubMed  Google Scholar 

  28. Veesenmeyer JL, Hauser AR, Lisboa T, Rello J (2009) Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med 37:1777–1786

    Article  PubMed Central  PubMed  Google Scholar 

  29. Wagenaar JA, Bergen MAPV, Mueller MA, Wassenaar TM, Carlton RM (2005) Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109:275–283

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Askora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didamony, G.E., Askora, A. & Shehata, A.A. Isolation and Characterization of T7-Like Lytic Bacteriophages Infecting Multidrug Resistant Pseudomonas aeruginosa Isolated from Egypt. Curr Microbiol 70, 786–791 (2015). https://doi.org/10.1007/s00284-015-0788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0788-8

Keywords

Navigation