Skip to main content
Log in

Culture and Motion Analysis of Diatom Bacillaria paradoxa on a Microfluidic Platform

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We proved the feasibility of using a microfluidic chip to culture diatom Bacillaria paradoxa, and analyzed the gliding characteristics of its self-organized colony in detail. The optimal cultivation parameters of B. paradoxa for the designed chip made with polydimethylsiloxane are as follows: the preferable cells injecting rate for keeping the cells alive is 0.2 mL/h, the initial cell density for fast reproduction is 5.5 × 104 cells/mL, and the optimal replacement period of culture medium is 4 days. B. paradoxa tends to form a colony during their growth, and the colony can glide with a steady period of 29 ± 3 s along its axial direction in a constant stream, the amplitude of the colony will not decay (e.g., 24 μm of two-cell colony at 1.1 mm/s flow rate), and the colony rapidly adjusts its direction of gliding to the direction of water flow. The successful culture of diatoms on a microfluidic platform may be used for biosensing chips and the creation of gasoline-producing diatom solar panels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  2. Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21:2947–2958

    Article  CAS  Google Scholar 

  3. Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27:116–127

    Article  PubMed  CAS  Google Scholar 

  4. Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ Sci 4:3930–3941

    Article  CAS  Google Scholar 

  5. Nassif N, Livage J (2011) From diatoms to silica-based biohybrids. Chem Soc Rev 40:849–859

    Article  PubMed  CAS  Google Scholar 

  6. Wang Y, Cai J, Jiang Y, Jiang X, Zhang D (2013) Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Appl Microbiol Biotechnol 97:453–460

    Article  PubMed  CAS  Google Scholar 

  7. Zhang D, Wang Y, Cai J, Pan J, Jiang X, Jiang Y (2012) Bio-manufacturing technology based on diatom micro-and nanostructure. Chin Sci Bull 57:3836–3849

    Article  CAS  Google Scholar 

  8. Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008) Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. ACS Nano 2:2103–2112

    Article  PubMed  CAS  Google Scholar 

  9. Qin T, Gutu T, Jiao J, Chang Ch, Rorrer GL (2008) Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom nitzschia frustulum. ACS Nano 2:1296–1304

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Zhang D, Cai J, Pan J, Chen M, Li A, Jiang Y (2012) Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method. Appl Microbiol Biotechnol 95:1165–1178

    Article  PubMed  CAS  Google Scholar 

  11. El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411

    Article  PubMed  CAS  Google Scholar 

  12. Huh D, Torisawa Ys, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12:2156–2164

    Article  PubMed  CAS  Google Scholar 

  13. Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP (2005) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89:1–8

    Article  PubMed  CAS  Google Scholar 

  14. Taylor AM, Blurton-Jones M, Rhee SW, Cribbs DH, Cotman CW, Jeon NL (2005) A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Methods 2:599–605

    Article  PubMed  CAS  Google Scholar 

  15. Au SH, Shih SCC, Wheeler AR (2011) Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomed Microdevices 13:41–50

    Article  PubMed  CAS  Google Scholar 

  16. Lee SS, Vizcarra IA, Huberts DHEW, Lee LP, Heinemann M (2012) Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc Natl Acad Sci USA 109:4916–4920

    Article  PubMed  CAS  Google Scholar 

  17. Ramachandra TV, Mahapatra DM, Karthick B, Gordon R (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48:8769–8788

    Article  CAS  Google Scholar 

  18. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella Nana hustedt, and detonula conferva (Cleve) gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  19. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  20. Yang, Y., Ohl, C., Yoon, H., and Liu, A. (2011). A highly efficient three-dimensional (3D) liquid–liquid waveguide laser by two flow streams. In: Micro electro mechanical systems (MEMS), 2011 IEEE 24th international conference on (IEEE), pp. 1071–1074

  21. Jahn R, Schmid A-MM (2007) Revision of the brackish-freshwater diatom genus Bacillaria Gmelin (Bacillariophyta) with the description of a new variety and two new species. Eur J Phycol 42:295–312

    Article  Google Scholar 

  22. Kapinga MR, Gordon R (1992) Cell motility rhythms in Bacillaria paxillifer. Diatom Res 7:221–225

    Article  Google Scholar 

  23. Kapinga MR, Gordon R (1992) Cell attachment in the motile colonial diatom Bacillaria paxillifer. Diatom Res 7:215–220

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 50805005 and 51275025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cai or Mingli Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Chen, M., Wang, Y. et al. Culture and Motion Analysis of Diatom Bacillaria paradoxa on a Microfluidic Platform. Curr Microbiol 67, 652–658 (2013). https://doi.org/10.1007/s00284-013-0413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0413-7

Keywords

Navigation