Skip to main content
Log in

The Community Dynamics of Major Bioleaching Microorganisms During Chalcopyrite Leaching Under the Effect of Organics

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

To determine the effect of organics (yeast extract) on microbial community during chalcopyrite bioleaching at different temperature, real-time polymerase chain reaction (PCR) was employed to analyze community dynamics of major bacteria applied in bioleaching. The results showed that yeast extract exerted great impact on microbial community, and therefore influencing bioleaching rate. To be specific, yeast extract was adverse to this bioleaching process at 30°C due to decreased proportion of important chemolithotrophs such as Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. However, yeast extract could promote bioleaching rate at 40°C on account of the increased number and enhanced work of Ferroplasma thermophilum, a kind of facultative bacteria. Similarly, bioleaching rate was enhanced under the effect of yeast extract at 50°C owing to the work of Acidianus brierleyi. At 60°C, bioleaching rate was close to 100% and temperature was the dominant factor determining bioleaching rate. Interestingly, the existence of yeast extract greatly enhanced the relative competitiveness of Ferroplasma thermophilum in this complex bioleaching microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bond PL, Druschel GK, Banfield JF (2000) Comparison of acid mine drainage microbial community in physically and geochemically distinct ecosystem. Appl Environ Microbiol 66:4962–4971

    Article  PubMed  CAS  Google Scholar 

  2. Chu C, Lin C, Wu Y, Lu W, Long J (2006) Organic matter increases jarosite dissolution in acid sulfate soils under inundation conditions. Aust J Soil Res 44:11–16

    Article  CAS  Google Scholar 

  3. Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40°C. Appl Environ Microbiol 68:838–845

    Article  PubMed  CAS  Google Scholar 

  4. Cruz FLS, Oliveira VA, Guimarães D, Souza AD, Leão VA (2010) High-temperature bioleaching of nickel sulfides: thermodynamic and kinetic implications. Hydrometallurgy 105:103–109

    Article  CAS  Google Scholar 

  5. Fang D, Zhou L (2006) Effect of sludge dissolved organic matter on oxidation of ferrous iron and sulfur by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Water Air Soil Pollut 171:81–94

    Article  CAS  Google Scholar 

  6. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    Article  PubMed  CAS  Google Scholar 

  7. Gao J, Zhang C, Wu X, Wang H, Qiu G (2007) Isolation and identification of a strain of Leptospirillum ferriphilum from an extreme acid mine drainage site. Ann Microbiol 57:171–176

    Article  CAS  Google Scholar 

  8. Girguis PR, Cozen AE, DeLong EF (2005) Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Appl Environ Microbiol 71:3725–3733

    Article  PubMed  CAS  Google Scholar 

  9. Heid CA, Stevens JK, Livak J, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  PubMed  CAS  Google Scholar 

  10. Ilyasa S, Anwarb MA, Niazia SB, Ghauri MA (2007) Bioleaching of metals from electronic scrap by moderately thermophilic acidophilic bacteria. Hydrometallurgy 88:180–188

    Article  Google Scholar 

  11. Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5:e9773

    Article  PubMed  Google Scholar 

  12. Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  PubMed  CAS  Google Scholar 

  13. Kirby BM, Vengadajellum CJ, Burton SG, Cowan DA (2010) Anthropogenically-created habitats—coal, coal mines and spoil heaps. In: Timmis KN (ed) Handbook of hydrocarbon and lipid Microbiology, vol 3. Springer, Heidelberg, pp 2277–2292

    Chapter  Google Scholar 

  14. Konishi Y, Yoshida S, Asai S (1995) Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol Bioeng 48:592–600

    Article  PubMed  CAS  Google Scholar 

  15. Konishi Y, Yoshida S, Asai S (1998) Effect of yeast extract supplementation in leach solution on bioleaching rate of pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol Bioeng 58:663–667

    Article  PubMed  CAS  Google Scholar 

  16. Ñancucheo I, Johnson DB (2010) Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia. Appl Environ Microbiol 76:461–467

    Article  PubMed  Google Scholar 

  17. Norris PR (2007) Acidophile diversity in mineral sulfide oxidation. Biomining 10:199–216

    Article  Google Scholar 

  18. Ojumu TV, Hansford GS, Petersen J (2009) The kinetics of ferrous-iron oxidation by Leptospirillum ferriphilum in continuous culture: the effect of temperature. Biochem Eng J 46:161–168

    Article  CAS  Google Scholar 

  19. Ozkaya B, Sahinkaya E, Nurmi P, Kaksonen AH, Puhakka JA (2008) Biologically Fe2+ oxidizing fluidized bed reactor performance and controlling of Fe3+ recycle during heap bioleaching: an artificial neural network-based model. Bioprocess Biosyst Eng 31:111–117

    Article  PubMed  CAS  Google Scholar 

  20. Peng J, Zhang R, Zhang Q, Zhang L, Zhou H (2008) Screening and characterization of Acidiphilium sp. PJH and its role in bioleaching. Trans Nonferr Met Soc China 18:1443–1449

    Article  CAS  Google Scholar 

  21. Pradhan N, Nathsarma KC, Srinivasa Rao KL, Sukla B, Mishra BK (2008) Heap bioleaching of chalcopyrite: a review. Miner Eng 21:355–365

    CAS  Google Scholar 

  22. Puhakka J, Tuovinen OH (1987) Effect of organic compounds on the microbiological leaching of a complex sulphide ore material. World J Microbiol Biotechnol 3:429–436

    Article  CAS  Google Scholar 

  23. Rawlings DE (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 4:13

    Article  PubMed  Google Scholar 

  24. Rodríguez Y, Ballester A, Blázquez ML, González F, Muñoz JA (2003) New information on the pyrite bioleaching mechanism at low and high temperature. Hydrometallurgy 71:37–46

    Article  Google Scholar 

  25. Sand W, Gehrke TP, Jozsa G (2001) (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  26. Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59:177–185

    Article  CAS  Google Scholar 

  27. Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29:151–159

    Article  PubMed  Google Scholar 

  28. Xia J, Yang Y, He H, Liang C, Zhao X, Zheng L, Ma C, Zhao Y, Nie Z, Qiu G (2010) Investigation of the sulfur speciation during chalcopyrite leaching by moderate thermophile Sulfobacillus thermosulfidooxidans. Int J Miner Process 94:52–57

    Article  CAS  Google Scholar 

  29. Yang S, Xie J, Qiu G (2002) Research and application of bioleaching and biooxidation technologies in China. Miner Eng 15:361–363

    Article  CAS  Google Scholar 

  30. Yin H, Cao L, Qiu G, Wang D, Kellogg L, Zhou J, Liu X, Dai Z, Ding J, Liu X (2008) Molecular diversity of 16S rRNA and gyrB genes in copper mines. Arch Microbiol 189:101–110

    Article  PubMed  CAS  Google Scholar 

  31. Zeng W, Qiu G, Zhou H, Peng J, Chen M, Tan S, Chao W, Liu X, Zhang Y (2010) Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate. Bioresour Technol 101:7068–7075

    Article  CAS  Google Scholar 

  32. Zhang L, Qiu G, Hu Y, Sun X, Li J, Gu G (2008) Bioleaching of pyrite by A. ferrooxidans and L. ferriphilum. Trans Nonferr Met Soc China 18:1415–1420

    Article  CAS  Google Scholar 

  33. Zhou H, Zhang R, Hu P, Zeng W, Xie Y, Wu C, Qiu G (2008) Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. J Appl Microbiol 105:591–601

    Article  PubMed  CAS  Google Scholar 

  34. Zou L, Qian L, Zhang Y, Wan M, Qiu G, Yang Y (2008) Isolation and identification of Acidiphilium strain DY from complex sulfide mines and its bioleaching characterization. Chin J Nonferr Met 18:336–341

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Basic Research Program (No. 2010CB630901), and the National Natural Science Foundation of China (Nos. 50621063, 30428014, and 30900203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaqun Yin or Xueduan Liu.

Additional information

Qihou Li, Ye Tian, and Xian Fu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Tian, Y., Fu, X. et al. The Community Dynamics of Major Bioleaching Microorganisms During Chalcopyrite Leaching Under the Effect of Organics. Curr Microbiol 63, 164–172 (2011). https://doi.org/10.1007/s00284-011-9960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-9960-y

Keywords

Navigation