Skip to main content
Log in

Phylogenetic Analysis of Cronobacter Isolates Based on the rpoA and 16S rRNA Genes

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The reclassification of the genus Cronobacter (previously known as Enterobacter sakazakii) was based on a polyphasic analysis that led to the description of five species. These bacteria are opportunistic pathogens that can cause neonatal meningitis and other infections in immuno-compromised individuals. Cronobacter species have been reported to show differences in sensitivity to antibiotics, heat and chemicals, as well as differences in virulence. The objective of this study was to classify Cronobacter isolates from infant formula milk, the food processing environment and fresh produce in South Africa and to evaluate the phylogenetic placement of these isolates based on the rpoA and 16S ribosomal RNA (rRNA) gene sequences. All the South African strains were identified as Cronobacter sakazakii despite the wide variety of isolation sources. No relation between the phylogenetic placement and strain origin could be determined. Strains of C. sakazakii, Cronobacter dublinensis, Cronobacter turicensis and Cronobacter muytjensii could be differentiated from each other, but it was not possible to differentiate between C. sakazakii and Cronobacter malonaticus based on the rpoA and 16S rRNA gene sequences alone. However, sequence data of these two genes can be used to differentiate between C. sakazakii and C. malonaticus when used in combination with biochemical analysis based on the utilisation of malonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Arroyo C, Condon S, Pagan R (2009) Thermobacteriological characterization of Enterobacter sakazakii. Int J Food Microbiol 136:110–118

    Article  PubMed  CAS  Google Scholar 

  3. Baldwin A, Loughlin M, Caubilla-Barron J et al (2009) Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 9:223

    Article  PubMed  Google Scholar 

  4. Caubilla-Barron J, Hurrell E, Townsend S et al (2007) Genotypic and phenotypic analysis of Enterobacter sakazakii strains from an outbreak resulting in fatalities in a neonatal intensive care unit in France. J Clin Microbiol 45:3979–3985

    Article  PubMed  CAS  Google Scholar 

  5. Cawthorn DM, Botha S, Witthuhn RC (2008) Evaluation of different methods for the detection and identification of Enterobacter sakazakii isolated from South African infant formula milks and the processing environment. Int J Food Microbiol 127:129–138

    Article  PubMed  Google Scholar 

  6. Farmer JJ, Asbury MA, Hickman FW et al (1980) Enterobacter sakazakii, new species of Enterobacteriaceae isolated from clinical specimens. Int J Syst Bacteriol 30:569–584

    Article  Google Scholar 

  7. Felske A, Rheims H, Wolterink A et al (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Acinetobacteria in grassland soils. Microbiology 143:2983–2989

    Article  PubMed  CAS  Google Scholar 

  8. Food and Agriculture Organization/World Health Organization (FAO/WHO) (2004) Enterobacter sakazakii and other microorganisms in powdered infant formula: Meeting Report, MRA series 6 Geneva, Switzerland [www document] URL. http://wwwwhoint/foodsafety/micro/meetings/feb2004/en/. Accessed 6 March 2009

  9. Food and Agriculture Organization/World Health Organization (FAO/WHO) (2008) Enterobacter sakazakii (Cronobacter spp.) in powdered follow-up formulae: Meeting Report, MRA series 15 Rome [www document] URL. http://wwwwhoint/foodsafety/micro/meetings/2008/en/. Accessed 11 May 2009

  10. Franke S, Grass G, Rensing C et al (2003) Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 185:3804–3812

    Article  PubMed  Google Scholar 

  11. Healy B, Huynh S, Mullane N et al (2009) Microarray-based comparative genomic indexing of the Cronobacter genus (Enterobacter sakazakii). Int J Food Microbiol 136:159–164

    Article  PubMed  CAS  Google Scholar 

  12. Iversen C, Lehner A, Mullane N et al (2007) The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1. BMC Evol Biol 64:1471–2148

    Google Scholar 

  13. Iversen C, Mullane N, McCardell B et al (2008) Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactardi subsp. nov. Int J Syst Evol Microbiol 58:1442–1447

    Article  PubMed  CAS  Google Scholar 

  14. Kellogg EA, Appels R, Mason-Gamer RJ (1996) When genes tell different stories: the diploid genera of Triticeae. Syst Bot 21:321–347

    Article  Google Scholar 

  15. Kucerova E, Clifton SW, Xia X et al (2010) Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridisation analysis with other Cronobacter species. PLoS ONE 5(3):e9556. doi:10.1371/journal.pone.0009556

    Article  PubMed  Google Scholar 

  16. Kuhnert P, Korczak BM, Stephan R et al (2009) Phylogeny and prediction of genetic similarity of Cronobacter and related taxa by multilocus sequence analysis (MLSA). Int J Food Microbiol 136:152–158

    Article  PubMed  CAS  Google Scholar 

  17. Kuzina LV, Peloquin JJ, Vacek DC et al (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens. Curr Microbiol 42:290–294

    PubMed  CAS  Google Scholar 

  18. Lai KK (2001) Enterobacter sakazakii infections among neonates, infants, children, and adults: case reports and a review of the literature. Medicine (Baltimore) 80:113–122

    Article  CAS  Google Scholar 

  19. MacLean LL, Pagotto F, Farber JM et al (2009) The structure of the O-antigen in the endotoxin of the emerging food pathogen Cronobacter (Enterobacter) muytjensii strain 3270. Carbohydr Res 344:667–671

    Article  PubMed  CAS  Google Scholar 

  20. Miled-Bennour R, Ells C, Pagotto FJ et al (2010) Genotypic and phenotypic characterisation of a collection of Cronobacter (Enterobacter sakazakii) isolates. Int J Food Microbiol 139:116–125

    Article  PubMed  CAS  Google Scholar 

  21. Mofokeng L, Cawthorn DM, Witthuhn CR et al (2010) Characterization of Cronobacter species (Enterobacter sakazakii) isolated from various South African food sources. J Food Saf 272:1745–4565

    Google Scholar 

  22. Mollet C, Drancourt M, Raoult D (1997) rpoB sequence analysis as a novel basis for bacterial identification. Mol Microbiol 25:1005–1011

    Article  Google Scholar 

  23. Nazarowec-White M, Farber JM (1997) Enterobacter sakazakii: a review. Int J Food Microbiol 34:103–113

    Article  PubMed  CAS  Google Scholar 

  24. Pagotto FJ, Nazarowec-White M, Bidawid S et al (2003) Enterobacter sakazakii: infectivity and enterotoxin production in vitro and in vivo. J Food Prot 66:370–375

    PubMed  Google Scholar 

  25. Swofford DL (2001) PAUP: phylogenetic analysis using parsimony (and other methods). Version 40 Sinauer Associates, Sunderland, MA

  26. Van Elsas JD, Mäntynen V, Wolters AC (1997) Soil DNA extraction and assessment of the fate of Mycobacterium chlorophenolicum strain PCP-1 in different soil by 16S ribosomal RNA gene sequence based most-probable-number PCR and immunofluorescence. Biol Fertil Soils 24:188–195

    Article  Google Scholar 

  27. Van Acker J, Smet F, Muyldermans G et al (2001) Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J Clin Microbiol 39:293–297

    Article  PubMed  Google Scholar 

  28. Wang S, Levin RE (2006) Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. J Microbiol Methods 64:1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincerest gratitude to Prof K. Jacobs (Microbiology, Stellenbosch University, South Africa) for assistance with the phylogenetic analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Corli Witthuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strydom, A., Cameron, M. & Witthuhn, R.C. Phylogenetic Analysis of Cronobacter Isolates Based on the rpoA and 16S rRNA Genes. Curr Microbiol 64, 251–258 (2012). https://doi.org/10.1007/s00284-011-0061-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-011-0061-8

Keywords

Navigation