Skip to main content
Log in

Antifungal Activity of PvD1 Defensin Involves Plasma Membrane Permeabilization, Inhibition of Medium Acidification, and Induction of ROS in Fungi Cells

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In recent years, studies have demonstrated the function of many antimicrobial peptides against an extensive number of microorganisms that have been isolated from different plant species and that have been used as models for the study of various cellular processes linked to these peptides’ activities. Recently, a new defensin from Phaseolus vulgaris (L.) seeds, named PvD1, was isolated and characterized. PvD1 was purified through anion exchange and phase-reverse chromatography. PvD1’s antifungal activity was tested. A SYTOX Green uptake assay revealed that the defensin PvD1 is capable of causing membrane permeabilization in the filamentous fungi Fusarium oxysporum, Fusarium solani, and Fusarium laterithium and in yeast strains Candida parapsilosis, Pichia membranifaciens, Candida tropicalis, Candida albicans, Kluyveromyces marxiannus, and Saccharomyces cerevisiae at a concentration of 100 μg/ml. Ultrastructural analysis of C. albicans and C. guilliermondii cells treated with this defensin revealed disorganization of both cytoplasmic content and the plasma membrane. PvD1 is also able to inhibit glucose-stimulated acidification of the medium by yeast cells and filamentous fungi, as well as to induce the production of reactive oxygen species and nitric oxide in C. albicans and F. oxysporum cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aerts AM, Francois IEJA, Meert EMK, Li Q-T, Cammue BPA, Thevissen K (2007) The antifungal activity of Rs-AFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13:243–247

    Article  PubMed  CAS  Google Scholar 

  2. Agizzio AP, Da Cunha M, Carvalho AO, Oliveira MA, Ribeiro SFF, Gomes VM (2006) The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells. Plant Sci 171:515–522

    Article  CAS  Google Scholar 

  3. Anaya-López JL, López-Meza JE, Baizabal-Aguirre VM, Cano-Camacho H, Ochoa-Zarzosa A (2006) Fungicidal and cytotoxic activity of a Capsicum chinense defensin expressed by endothelial cells. Biotechnol Lett 28:1101–1108

    Article  PubMed  Google Scholar 

  4. Carvalho AO, Gomes VM (2009) Plant defensins—prospects for the biological functions and biotechnological properties. Peptides 30:1007–1020

    Article  CAS  Google Scholar 

  5. Chen G-H, Hsu M-P, Tan C-H, Sung H-Y, Kuo CG, Fan M-J, Chen H-M, Chen S, Chen C-S (2005) Cloning and characterization of a plant defensin VaD1 from azuki bean. J Agric Food Chem 53:982–988

    Article  PubMed  CAS  Google Scholar 

  6. Diz MSS, Carvalho AO, Rodrigues R, Neves-Ferreira AGC, Da Cunha M, ElW Alves, Okorokova-Façanha AL, Oliveira MA, Perales J, Machado OLT, Gomes VM (2006) Antimicrobial peptides from chilli pepper seeds causes yeast plasma membrane permeabilization and inhibits the acidification of the medium by yeast cells. Biochim Biophys Acta 1760:1323–1332

    PubMed  CAS  Google Scholar 

  7. Finkina EI, Shramova EI, Tagaev AA, Ovchinnikova TV (2008) A novel defensin from the lentil Lens culinaris seeds. Biochem Biophys Res Commun 371:860–865

    Article  PubMed  CAS  Google Scholar 

  8. Games PD, Santos IS, Mello EO, Diz MSS, Carvalho AO, Souza-Filho GA, Da Cunha M, Vasconcelos IM, Ferreira BS, Gomes VM (2008) Isolation, characterization and cloning of a cDNA encoding a new antifungal defensin from Phaseolus vulgaris L. seeds. Peptides 29:2090–2100

    Article  PubMed  CAS  Google Scholar 

  9. Gomes VM, Okorokov LA, Rose TL, Fernandes KVS, Xavier-Filho J (1998) Legume vicilins (7S storage globulins) inhibit yeast growth and glucose stimulated acidification of the médium by yeast cells. Biochim Biophys Acta 1379:207–216

    PubMed  CAS  Google Scholar 

  10. Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, Bellio M, Campos RC, Linden R, Kurtenbach E (2007) Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochemistry 46:987–996

    Article  PubMed  CAS  Google Scholar 

  11. Odintsova TI, Rogozhin EA, Baranov Y, Musolyamov AK, Nasser Y, Egorov TA, Grishin EV (2008) Seed defensins of barnyard grass Echinochloa crusgalli (L.). Beauv Biochimie 90:1667–1673

    Article  CAS  Google Scholar 

  12. Olli S, Kirti PB (2006) Cloning, characterization and antifungal activity of defensin Tfgd1 from Trigonella foenum-graecum L. J Biochem Mol Biol 39:278–283

    PubMed  CAS  Google Scholar 

  13. Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    Article  PubMed  CAS  Google Scholar 

  14. Park HC, Kang YH, Chun HJ, Koo JC, Cheong YH, Kim CY, Kim MC, Chung WS, Kim JC, Yoo JH, Koo YD, Koo SC, Lim CO, Lee SY, Cho MJ (2002) Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol Biol 50:59–69

    Article  PubMed  CAS  Google Scholar 

  15. Phillips AJ, Sudbery I, Ramsdale M (2003) Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. PNAS 100:14327–14332

    Article  PubMed  CAS  Google Scholar 

  16. Ramamoorthy V, Cahoon EB, Li J, Thokala M, Minto RE, Shah DM (2007) Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Mol Microbiol 66(3):771–786

    Article  PubMed  CAS  Google Scholar 

  17. Regente MC, Giudici AM, Villalaín J, de la Canal L (2005) The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells. Lett Appl Microbiol 40:183–189

    Article  PubMed  CAS  Google Scholar 

  18. Schägger H, Von Jagow G (1987) Tricine-sodium dodecylsulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  PubMed  Google Scholar 

  19. Solis J, Medrano G, Ghislain M (2007) Inhibitory effect of a defensin gene from the Andean crop maca (Lepidium meyenii) against Phytophthora infestans. J Plant Physiol 164:1071–1082

    Article  PubMed  CAS  Google Scholar 

  20. Terras FRG, Schoofs HME, De Bolle MFC, Van Leuven F, Rees SB, Vanderleyden J, Cammue BPA, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309

    PubMed  CAS  Google Scholar 

  21. Terras FRG, Torrekens S, Van Leuven F, Osborn RW, Vanderleyden J, Cammue BPA, Broekaert WF (1993) A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS 316:233–240

    Article  CAS  Google Scholar 

  22. Thevissen K, Ferket KKA, François IEJA, Cammue BPA (2003) Interactions of antifungal plant defensins with fungal membrane components. Peptides 24:1705–1712

    Article  PubMed  CAS  Google Scholar 

  23. Thevissen K, François IE, Winderckx J, Pannecouque C, Cammue BP (2006) Ceramide involvement in apoptosis and apoptotic diseases. Min Rev Med Chem 6:69–709

    Google Scholar 

  24. Thevissen K, François IEJA, Takemoto JY, Ferket KKA, Meert EMK, Cammue BPA (2003) DmAMP1, an antifungal plant defensin from dahlia (Dahlia merckii), interacts with sphingolipids from Saccharomyces cerevisiae. FEMS Microbiol Lett 226:169–173

    Article  PubMed  CAS  Google Scholar 

  25. Thevissen K, Ghazi A, De Samblanx GW, Brownleei C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025

    Article  PubMed  CAS  Google Scholar 

  26. Thevissen K, Terras FRG, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458

    PubMed  CAS  Google Scholar 

  27. van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J Biol Chem 283:14445–14452

    Article  PubMed  Google Scholar 

  28. Wang HX, Ng TB (2006) An antifungal peptide from baby lima bean. Appl Microbiol Biotechnol 73:576–581

    Article  PubMed  CAS  Google Scholar 

  29. Wisniewski ME, Bassett CL, Artlip TS, Webb RP, Janisiewicz WJ, Norelli JL, Goldway M, Droby S (2003) Characterization of a defensin in bark and fruit tissues of peach and antimicrobial activity of a recombinant defensin in the yeast, Pichia pastoris. Physiol Plant 119:563–572

    Article  CAS  Google Scholar 

  30. Wong JH, Ng TB (2005) Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 26:1120–1126

    Article  PubMed  CAS  Google Scholar 

  31. Wong JH, Ng TB (2005) Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). IJBCB 37:1626–1632

    CAS  Google Scholar 

  32. Ye XY, Ng TB (2002) A new antifungal peptide from rice beans. J Peptide Res 60:81–87

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study forms part of the M.Sc. degree dissertation and DSc degree thesis of EOM, first author of this article, carried out at the Universidade Estadual do Norte Fluminense. The authors acknowledge the financial support of the Brazilian agencies CNPq, CAPES, and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdirene M. Gomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mello, E.O., Ribeiro, S.F.F., Carvalho, A.O. et al. Antifungal Activity of PvD1 Defensin Involves Plasma Membrane Permeabilization, Inhibition of Medium Acidification, and Induction of ROS in Fungi Cells. Curr Microbiol 62, 1209–1217 (2011). https://doi.org/10.1007/s00284-010-9847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9847-3

Keywords

Navigation