Skip to main content
Log in

Site-Directed Mutagenesis and Thermostability of Xylanase XYNB from Aspergillus niger 400264

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Xylanase is one of the most important hemicellulases in industry. However, its low thermostability limits its applications. In this study, one thermostable xylanase-producing strain 400264 was obtained from screening 11 Aspergillus niger strains (producing thermotolerant xylanase), and the optimum temperature of crude xylanase extracted from it was 55°C. Original activity of the crude xylanase is 64% at 60°C and 55% at 85°C with an incubation time of 30 min, respectively. After the expression of recombinant xylanase gene (xynA/xynB), the XYNB (xylanase B) showed higher thermostability than XYNA (xylanase A). Recombinant enzyme XYNB retained 94% of its activity for 10 min at 85°C, while XYNA with no activity left. Site-directed mutagenesis was performed to replace Ala33 of XYNB by Ser33 resulting 19% decrease in enzyme activity after incubating at 85°C for 30 min. It suggested that the Ala33 residue may have a certain effect on the thermophilic adaptation of xylanase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    Article  CAS  PubMed  Google Scholar 

  2. Li Y, Zhang B, Chen X, Chen Y, Cao Y (2009) Improvement of Aspergillus sulphureus Endo-beta-1,4-xylanase expression in Pichia pastoris by codon optimization and analysis of the enzymic characterization. Appl Biochem Biotechnol. doi:10.1007/s12010-009-8621-0

  3. Shanklin J (2008) Enzyme engineering. Adv Plant Biochem Mol Biol 1:29–47

    Article  CAS  Google Scholar 

  4. Wang J, Zhang WW, Liu JN, Cao YL, Bai XT, Gong YS, Cen PL, Yang MM (2009) An alkali-tolerant xylanase produced by the newly isolated alkaliphilic Bacillus pumilus from paper mill effluent. Mol Biol Rep. doi:10.1007/s11033-009-9915-6

  5. Yi X, Sun L, Liu X, Tao HH, Abudukerim M, Rahman E (2007) Xylanase production and properties by newly isolated from thermostable alkaliphilic Chinese Bacillus strains. Biotechnology 17(5):31–35

    CAS  Google Scholar 

  6. Annamalai N, Thavasi R, Jayalakshmi S, Balasubramanian T (2009) Thermostable and alkaline tolerant xylanase production by Bacillus subtilis isolated form marine environment. Indian J Biotechnol 8(3):291–297

    CAS  Google Scholar 

  7. Roberge M, Shareck F, Morosoli R, Kluepfel D, Dupont C (1998) Site-directed mutagenesis study of a conserved residue in family 10 glycanase:histidine 86 of xylanase A from Streptomyces licidans. Protein Eng 11(5):399–404

    Article  CAS  PubMed  Google Scholar 

  8. Turunen O, Vuorio M, Fenel F, Leisola M (2002) Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-beta-xylanase II increase the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Eng 15(2):141–145

    Article  CAS  PubMed  Google Scholar 

  9. You C, Huang Q, Xue HP, Xu Y, Lu H (2009) Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase from N. patriciarum. Biotechnol Bioeng. doi:10.1002/bit.22623

  10. Vries DE, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):497–522

    Article  PubMed  Google Scholar 

  11. Weng XY, Sun JY (2005) Construction, expression, and characterization of a thermostable xylanase. Curr Microbiol 51(3):188–192

    Article  CAS  PubMed  Google Scholar 

  12. Krisana A, Rutchadaporn S, Jarupan G, Lily E, Sutipa T, Kanyawim K (2005) Endo-1, 4-xylanase B from Aspergillus cf. niger BCC14405 isolated in Thailand: purification, characterization and gene isolation. J Biochem Mol Biol 38(1):17–23

    CAS  PubMed  Google Scholar 

  13. Kavya V, Padmavathi T (2009) Optimization of growth conditions for xylanase production by Aspergillus niger in solid state fermentation. Pol J Microbiol 58(2):125–130

    CAS  PubMed  Google Scholar 

  14. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  15. LaemmLi UK (1970) Cleavage of structural proteins during the assemble of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  16. Bai YG, Wang JS, Zhang ZF, Yang PL, Shi PJ, Luo HY, Meng K, Huang HQ, Yao B (2010) A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol 37(2):187–194

    Article  CAS  PubMed  Google Scholar 

  17. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  18. Krengel U, Dijkstra BW (1996) Three-dimensional structure of endo-1, 4-β-xylanase I from Aspergillus niger: molecular basis for its low pH optimum. J Mol Biol 263:70–78

    Article  CAS  PubMed  Google Scholar 

  19. Luttig M, Pretorius IS, Van Zyl WH (1997) Cloning of two β-xylanase-encoding genes from Aspergillus niger and their expression in Saccharomyces cerevisiae. Biotechnol Lett 19(5):411–415

    Article  CAS  Google Scholar 

  20. Luo HY, Wang YR, Li J, Wang H, Yang J, Yang YH, Huang HQ, Fan YL, Yao B (2009) Cloning, expression and characterization of a novel acidic xylanase, XYL11B1, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb Technol 45(2):126–133

    Article  CAS  Google Scholar 

  21. Cao YH, Chen XL, He PL, Lu WQ (2006) Cloning, expression and enzyme characterization analysis of A. sulphureus xylanase gene xynA. Lett Biotechnol 17(6):878–881

    CAS  Google Scholar 

  22. Van Ooyen AJJ, De Graaff LH, Van Den Broeck HC, Visser J (1994) Cloning and expression of xylanase B. International Patent Application WO94/14965 Gist-Brocades Delft

  23. Sriprang R, Asano K, Gobsuk J, Tanapongpipat S, Champreda V, Eurwilaichitr L (2006) Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. J Biotechnol 126(4):454–462

    Article  CAS  PubMed  Google Scholar 

  24. Moreau A, Shareck F, Kluepfel D, Morosoli R (1994) Increase in catalytic activity and thermostability of the xylanase A of Streptomyces lividans 1326 by site specific mutagenesis. Enzyme Microb Technol 16(5):420–424

    Article  CAS  PubMed  Google Scholar 

  25. Al Balaa B, Brijs K, Gebruers K, Vandenhaute J, Wouters J, Housen I (2009) Xylanase XYL1p from Scytalidium acidophilium: site-directed mutagenesis and acidophilic adaption. Bioresour Technol 100(24):6465–6571

    Article  PubMed  Google Scholar 

  26. Liu LW, Wang B, Chen HG, Wang SY, Wang MD, Zhang SM, Song AD, Shen JW, Wu K, Jia XC (2009) Rational pH-engineering of the thermostable xylanase based on computational model. Process Biochem 44:912–915

    Article  CAS  Google Scholar 

  27. Payan F, Flatman R, Porciero S, Williamson G, Juge N, Roussel A (2003) Structural analysis of xylanase inhibitor protein I (XIP-I), a proteinaceous xylanase inhibitor from wheat (Triticum aestivum, var. Soisson). Biochemical J 372:399–405

    Article  CAS  Google Scholar 

  28. Natesh R, Manikandan K, Bhanumoorthy P, Viswamitra MA, Ramakumar S (2003) Thermostable xylanase from Thermoascus aurantiacus at ultrahigh resolution (0.89 A) at 100 K and atomic resolution (1.11 A) at 293 K refined anisotropically to small molecule accuracy. Acta Crystallogr Sect D 59:105–117

    Article  CAS  Google Scholar 

  29. Davoodi J, Wakarchuk WW, Carey PR, Surewicz WK (2007) Mechanism of stabilization of Bacillus circulans xylanase upon the introduction of disulfide bonds. Biophys Chem 125:453–461

    Article  CAS  PubMed  Google Scholar 

  30. Malik A, Ahmad S (2007) Sequence and structural features of carbohydrate binding in proteins and assessment of predictability using a neural network. BMC Struct Biol 7(1):1–14

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Special Basic Research Projects of China (Grant No. SB2007FY400-4), by the National Basic Research Program (973) of China (Grant No. 2009CB125910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, J., Song, L., Li, X. et al. Site-Directed Mutagenesis and Thermostability of Xylanase XYNB from Aspergillus niger 400264. Curr Microbiol 62, 242–248 (2011). https://doi.org/10.1007/s00284-010-9697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9697-z

Keywords

Navigation