Skip to main content

Advertisement

Log in

Cloning, Overexpression, Purification, and Characterization of the Maleylacetate Reductase from Sphingobium chlorophenolicum Strain ATCC 53874

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The final enzyme in the pentachlorophenol (PCP) biodegradation pathway in Sphingobium chlorophenolicum is maleylacetate reductase (PcpE), which catalyzes the reductive dehalogenation of 2-chloromaleylacetate to maleylacetate and the subsequent reduction of malyelacetate to 3-oxoadipate. In this study, the pcpE gene was cloned from S. chlorophenolicum strain ATCC 53874 and overexpressed in Escherichia coli BL21-AI cells. The recombinant PcpE, purified to higher than 95% purity using affinity chromatography, exhibited optimal activity at pH 7.0. The kinetic parameters k cat and K m were 1.2 ± 0.3 s−1 and 0.09 ± 0.04 mM, respectively, against maleylacetate under the optimal pH. In addition, the purified PcpE was able to restore PCP-degrading capability to S. chlorophenolicum strain ATCC 39723, implicating that there was no functional PcpE in the ATCC 39723 strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cai M, Xun L (2002) Organization and regulation of pentachlorophenol-degrading genes in Sphingobium chlorophenolicum ATCC 39723. J Bacteriol 184:4672–4680

    Article  PubMed  CAS  Google Scholar 

  2. Chen L, Yang J (2008) Biochemical characterization of the tetrachlorobenzoquinone reductase involved in the biodegradation of pentachlorophenol. Int J Mol Sci 9:198–212

    Article  PubMed  Google Scholar 

  3. Copley SD (2000) Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25:261–265

    Article  PubMed  CAS  Google Scholar 

  4. Crawford RL (1987) Biodegradation of pentachlorophenol. US Patent No. 4713340

  5. Dai M, Rogers JB, Warner JR, Copley SD (2003) A previously unrecognized step in pentachlorophenol degradation in Sphingobium chlorophenolicum is catalyzed by tetrachlorobenzoquinone reductase (PcpD). J Bacteriol 185:302–310

    Article  PubMed  CAS  Google Scholar 

  6. Daniel V, Huber W, Bauer K, Suesal C, Mytilineos J, Melk A, Conradt C, Opelz G (2001) Association of elevated blood levels of pentachlorophenol (PCP) with cellular and humoral immunodeficiencies. Arch Environ Health 56:77–83

    Article  PubMed  CAS  Google Scholar 

  7. Frank R, Braun HE, Ripley BD, Clegg BS (1990) Contamination of rural ponds with pesticides, 1971–85, Ontario, Canada. Bull Environ Contam Toxicol 44:401–409

    Article  PubMed  CAS  Google Scholar 

  8. Ingham CF, Massy-Westropp RA, Reynolds GD, Thorpe WD (1975) A synthesis of enol-lactones. Aust J Chem 28:2499–2510

    Article  CAS  Google Scholar 

  9. Ingram L, Tarlton K (2005) Effect of physical properties of pentachlorophenol and creosote components on vaporization from treated wood: review of prior data. Forest Prod J 55:86–89

    CAS  Google Scholar 

  10. Kaschabek SR, Reineke W (1995) Maleylacetate reductase of Pseudomonas sp. strain B13: specificity of substrate conversion and halide elimination. J Bacteriol 177:320–325

    PubMed  CAS  Google Scholar 

  11. Khurana V, Barkin JS (2001) Pancreatitis induced by environmental toxins. Pancreas 22:102–105

    Article  PubMed  CAS  Google Scholar 

  12. Massy-Westropp RA, Price MF (1980) The synthesis of 5-oxo-2,5-dihydrofuran-2-ylideneacetic acids. Aust J Chem 33:333–341

    Article  CAS  Google Scholar 

  13. McAllister KA, Lee H, Trevors JT (1996) Microbial degradation of pentachlorophenol. Biodegradation 7:1–40

    Article  CAS  Google Scholar 

  14. McCarthy DL, Claude AA, Copley SD (1997) In vivo levels of chlorinated hydroquinones in a pentachlorophenol-degrading bacterium. Appl Environ Microbiol 63:1883–1888

    PubMed  CAS  Google Scholar 

  15. Miyauchi K, Adachi Y, Nagata Y, Takagi M (1999) Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of γ-hexachlorocyclohexane in Sphingomonas paucimobilis. J Bacteriol 181:6712–6719

    PubMed  CAS  Google Scholar 

  16. Peper M, Ertl M, Gerhard I (1999) Long-term exposure to wood-preserving chemicals containing pentachlorophenol and lindane is related to neurobehavioral performance in women. Am J Ind Med 35:632–641

    Article  PubMed  CAS  Google Scholar 

  17. Sai K, Kang KS, Hirose A, Hasegawa R, Trosko JE, Inoue T (2001) Inhibition of apoptosis by pentachlorophenol in v-myc-transfected rat liver epithelial cells: relation to down-regulation of gap junctional intercellular communication. Cancer Lett 173:163–174

    Article  PubMed  CAS  Google Scholar 

  18. Su Y, Chen L, Bandy B, Yang J (2008) The catalytic product of pentachlorophenol 4-monooxygenase is tetrachlorohydroquinone rather than tetrachlorobenzoquinone. Open Microbiol J 2:100–106

    Article  PubMed  CAS  Google Scholar 

  19. Thompson TS, Treble RG, Mariasegaram M (1997) Determination of atmospheric contamination by pentachlorophenol using pine needles located near treated utility pole storage sites. Bull Environ Contam Toxicol 59:548–555

    Article  PubMed  CAS  Google Scholar 

  20. Xun L, Orser CS (1991) Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol 173:4447–4453

    PubMed  CAS  Google Scholar 

  21. Xun L, Topp E, Orser CS (1992) Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J Bacteriol 174:2898–2902

    PubMed  CAS  Google Scholar 

  22. Xun L, Topp E, Orser CS (1992) Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol 174:8003–8007

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada, a New Investigator Establishment Grant from the Saskatchewan Health Research Foundation, and a New Opportunities Fund from the Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Maloney, K., Krol, E. et al. Cloning, Overexpression, Purification, and Characterization of the Maleylacetate Reductase from Sphingobium chlorophenolicum Strain ATCC 53874. Curr Microbiol 58, 599–603 (2009). https://doi.org/10.1007/s00284-009-9377-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9377-z

Keywords

Navigation