Skip to main content

Advertisement

Log in

Tip-α (hp0596 Gene Product) Is a Highly Immunogenic Helicobacter pylori Protein Involved in Colonization of Mouse Gastric Mucosa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A product of the Helicobacter pylori hp0596 gene (Tip-α) is a highly immunogenic homodimeric protein, unique for this bacterium. Cell fractionation experiments indicate that Tip-α is anchored to the inner membrane. In contrast, the three-dimensional model of the protein suggests that Tip-α is soluble or, at least, largely exposed to the solvent. hp0596 gene knockout resulted in a significant decrease in the level of H. pylori colonization as measured by real-time PCR assay. In addition, the Tip-α recombinant protein was determined to stimulate macrophage to produce IL-1α and TNF-α. Both results imply that Tip-α is rather loosely connected to the inner membrane and potentially released during infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adamczak R, Porollo A, Meller J (2004) Accurate prediction of solvent accessibility using neural networks-based regression. Proteins 56:753–767

    Article  PubMed  CAS  Google Scholar 

  2. Algood HM, Cover TL (2006) Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev 19:597–613

    Article  PubMed  CAS  Google Scholar 

  3. Alm RA, Ling LS, Moir DT et al. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180

    Article  PubMed  CAS  Google Scholar 

  4. Ames GF, Prody C, Kustu S (1984) Simple, rapid, and quantitative release of periplasmic proteins by chloroform. J Bacteriol 160:1181–1183

    PubMed  CAS  Google Scholar 

  5. Baik SC, Kim KM, Song SM et al. (2004) Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol 186:949–955

    Article  PubMed  CAS  Google Scholar 

  6. Beales IL (2002) Effect of interlukin-1beta on proliferation of gastric epithelial cells in culture. BMC Gastroenterol 2:7

    Article  PubMed  Google Scholar 

  7. Blaser MJ, Hopkins JA, Berka RM et al. (1983) Identification and characterization of Campylobacter jejuni outer membrane proteins. Infect Immun 42:276–284

    PubMed  CAS  Google Scholar 

  8. Bumann D, Aksu S, Wendland M et al. (2002) Proteome analysis of secreted proteins of the gastric pathogen Helicobacter pylori. Infect Immun 70:3396–3403

    Article  PubMed  CAS  Google Scholar 

  9. Cover TL, Blanke SR (2005) Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 3:320–332

    Article  PubMed  CAS  Google Scholar 

  10. Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511

    Article  PubMed  CAS  Google Scholar 

  11. Dzwonek A, Mikula M, Woszczynski M et al. (2004) Protective effect of vaccination with DNA of the H. pylori genomic library in experimentally infected mice. Cell Mol Biol Lett 9:483–495

    PubMed  CAS  Google Scholar 

  12. Filip C, Fletcher G, L. Wulff JL, et al. (1973) Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 175:966–972

  13. Fischer D (2000) Hybrid fold recognition:combining sequence derived properties with evolutionary information. In: Altman RB (ed) Pacific Symposium on Biocomputing. World Scientific, Singapore, pp 119–130

    Google Scholar 

  14. Godlewska R, Dzwonek A, Mikula M et al. (2006) Helicobacter pylori protein oxidation influences the colonization process. Int J Med Microbiol 296:321–324

    Article  PubMed  CAS  Google Scholar 

  15. Gorrell RJ, Yang J, Kusters JG et al. (2005) Restriction of DNA encoding selectable markers decreases the transformation efficiency of Helicobacter pylori. FEMS Immunol Med Microbiol 44:213–219

    Article  PubMed  CAS  Google Scholar 

  16. Haas G, Karaali G, Ebermayer K et al. (2002) Immunoproteomics of Helicobacter pylori infection and relation to gastric disease. Proteomics 2:313–324

    Article  PubMed  CAS  Google Scholar 

  17. Jones AC, Logan RP, Foynes S et al. (1997) A flagellar sheath protein of Helicobacter pylori is identical to HpaA, a putative N-acetylneuraminyllactose-binding hemagglutinin, but is not an adhesin for AGS cells. J Bacteriol 179:5643–5647

    PubMed  CAS  Google Scholar 

  18. Jones DT (1999) GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol 287:797–815

    Article  PubMed  CAS  Google Scholar 

  19. Jungblut PR, Bumann D, Haas G et al. (2000) Comparative proteome analysis of Helicobacter pylori. Mol Microbiol 36:710–725

    Article  PubMed  CAS  Google Scholar 

  20. Karplus K, Karchin R, Draper J et al. (2003) Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins 53:491–496

    Article  PubMed  CAS  Google Scholar 

  21. Keenan J, Oliaro J, Domigan N et al. (2000) Immune response to an 18-kilodalton outer membrane antigen identifies lipoprotein 20 as a Helicobacter pylori vaccine candidate. Infect Immun 68:3337–3343

    Article  PubMed  CAS  Google Scholar 

  22. Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499–520

    Article  PubMed  CAS  Google Scholar 

  23. Kimmel B, Bosserhoff A, Frank R et al. (2000) Identification of immunodominant antigens from Helicobacter pylori and evaluation of their reactivities with sera from patients with different gastroduodenal pathologies. Infect Immun 68:915–920

    Article  PubMed  CAS  Google Scholar 

  24. Kosinski J, Cymerman IA, Feder M et al. (2003) A “FRankenstein’s monster” approach to comparative modeling: merging the finest fragments of fold-recognition models and iterative model refinement aided by 3D structure evaluation. Proteins 53(Suppl 6):369–379

    Article  PubMed  CAS  Google Scholar 

  25. Kostrzynska M, PW OT, Taylor DE et al. (1994) Molecular characterization of a conserved 20-kilodalton membrane-associated lipoprotein antigen of Helicobacter pylori. J Bacteriol 176:5938–5948

    Google Scholar 

  26. Kurowski MA, Bujnicki JM (2003) GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31:3305–3307

    Article  PubMed  CAS  Google Scholar 

  27. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19:449–490

    Article  PubMed  CAS  Google Scholar 

  28. Kuzuhara T, Suganuma M, Kurusu M et al. (2007) Helicobacter pylori-secreting protein Tipalpha is a potent inducer of chemokine gene expressions in stomach cancer cells. J Cancer Res Clin Oncol 133:287–296

    Article  PubMed  CAS  Google Scholar 

  29. Kuzuhara T, Suganuma M, Tsuge H et al. (2005) Presence of a motif conserved between Helicobacter pylori TNF-alpha inducing protein (Tipalpha) and penicillin-binding proteins. Biol Pharm Bull 28:2133–2137

    Article  PubMed  CAS  Google Scholar 

  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–695

    Article  PubMed  CAS  Google Scholar 

  31. Lazowska I, Trzeciak L, Godlewska R et al. (2000) In search of immunogenic Helicobacter pylori proteins by screening of expression library. Digestion 61:14–21

    Article  PubMed  CAS  Google Scholar 

  32. Lee A, O’Rourke J, De Uungria MC et al. (1997) A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology 112:1386–1397

    Article  PubMed  CAS  Google Scholar 

  33. Lundstrom J, Rychlewski L, Bujnicki JM et al. (2001) Pcons: a neural-network-based consensus predictor that improves fold recognition. Protein Sci 10:2354–2362

    Article  PubMed  CAS  Google Scholar 

  34. McAtee CP, Lim MY, Fung K et al. (1998) Identification of potential diagnostic and vaccine candidates of Helicobacter pylori by two-dimensional gel electrophoresis, sequence analysis, and serum profiling. Clin Diagn Lab Immunol 5:537–542

    PubMed  CAS  Google Scholar 

  35. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  PubMed  CAS  Google Scholar 

  36. Meiler J, Baker D (2003) Coupled prediction of protein secondary and tertiary structure. Proc Natl Acad Sci USA 100:12105–12110

    Article  PubMed  CAS  Google Scholar 

  37. Mikula M, Dzwonek A, Jagusztyn-Krynicka EK et al. (2003) Quantitative detection for low levels of Helicobacter pylori infection in experimentally infected mice by real-time PCR. J Microbiol Methods 55:351–359

    Article  PubMed  CAS  Google Scholar 

  38. Mini R, Bernardini G, Salzano AM et al. (2006) Comparative proteomics and immunoproteomics of Helicobacter pylori related to different gastric pathologies. J Chromatogr B Anal Technol Biomed Life Sci 833:63–79

    Article  CAS  Google Scholar 

  39. Narita S, Tokuda H (2007) Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem 282:13372–13378

    Article  PubMed  CAS  Google Scholar 

  40. O’Toole P, Janzon L, Doig P et al. (1995) The putative neuraminyllactose-binding hemagglutinin HpaA of Helicobacter pylori CCUG 17874 is a lipoprotein. J Bacteriol 177:6049–6057

    PubMed  CAS  Google Scholar 

  41. Ouali M, King RD (2000) Cascaded multiple classifiers for secondary structure prediction. Protein Sci 9:1162–1176

    Article  PubMed  CAS  Google Scholar 

  42. Radosz-Komoniewska H, Bek T, Jozwiak J et al. (2005) Pathogenicity of Helicobacter pylori infection. Clin Microbiol Infect 11:602–610

    Article  PubMed  CAS  Google Scholar 

  43. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32:W321–W326

    Article  PubMed  CAS  Google Scholar 

  44. Rychlewski L, Jaroszewski L, Li W et al. (2000) Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci 9:232–241

    Article  PubMed  CAS  Google Scholar 

  45. Sabarth N, Hurwitz R, Meyer TF et al. (2002) Multiparameter selection of Helicobacter pylori antigens identifies two novel antigens with high protective efficacy. Infect Immun 70:6499–6503

    Article  PubMed  CAS  Google Scholar 

  46. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  47. Seydel A, Gounon P, Pugsley AP (1999) Testing the ‘+2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 34:810–821

    Article  PubMed  CAS  Google Scholar 

  48. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257

    Article  PubMed  CAS  Google Scholar 

  49. Simons KT, Kooperberg C, Huang E et al. (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268:209–225

    Article  PubMed  CAS  Google Scholar 

  50. Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  51. Suganuma M, Kurusu M, Suzuki K et al. (2005) New tumor necrosis factor-alpha-inducing protein released from Helicobacter pylori for gastric cancer progression. J Cancer Res Clin Oncol 131:305–313

    Article  PubMed  CAS  Google Scholar 

  52. Suganuma M, Kuzuhara T, Yamaguchi K et al. (2006) Carcinogenic role of tumor necrosis factor-alpha inducing protein of Helicobacter pylori in human stomach. J Biochem Mol Biol 39:1–8

    PubMed  CAS  Google Scholar 

  53. Tomb JF, White O, Kerlavage AR et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  PubMed  CAS  Google Scholar 

  54. Vanet A, Marsan L, Labigne A et al. (2000) Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals. J Mol Biol 297:335–353

    Article  PubMed  CAS  Google Scholar 

  55. Yoshida M, Wakatsuki Y, Kobayashi Y et al. (1999) Cloning and characterization of a novel membrane-associated antigenic protein of Helicobacter pylori. Infect Immun 67:286–293

    PubMed  CAS  Google Scholar 

  56. Zhang Z, H., Niesel DW, Peterson JW et al. (1998) Lipoprotein release by bacteria: potential factor in bacterial pathogenesis. Infect Immun 66:5196–5201

  57. Zhou H, Zhou Y (2004) Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins 55:1005–1013

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Godlewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godlewska, R., Pawlowski, M., Dzwonek, A. et al. Tip-α (hp0596 Gene Product) Is a Highly Immunogenic Helicobacter pylori Protein Involved in Colonization of Mouse Gastric Mucosa. Curr Microbiol 56, 279–286 (2008). https://doi.org/10.1007/s00284-007-9083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-007-9083-7

Keywords

Navigation