Skip to main content

Advertisement

Log in

Update on crescentic glomerulonephritis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The recent years have seen a number of major progresses in the field of extracapillary glomerulonephritis. This entity is the final damage caused by unrelated immunological disorders such as immune complexes glomerular deposits or microvascular injury caused by proinflammatory cytokines, neutrophil extracellular traps (NET), and cell adhesion molecules in the context of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). This review provides a summary of recent advances in the understanding of crescentic glomerulonephritis, focusing on interplays of local immune cells and on local mediators participating to crescent formation especially in anti-glomerular basement membrane (anti-GBM) antibody disease. The recent advances about AAV and lupus nephritis are covered by other chapters of this issue. Nevertheless, these considerations may apply to the general case of crescentic glomerulonephritis of all causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pavenstadt H, Kriz W, Kretzler M (2003) Cell biology of the glomerular podocyte. Physiol Rev 83:253–307

    CAS  PubMed  Google Scholar 

  2. Besse-Eschmann V, Le Hir M, Endlich N, Endlich K (2004) Alteration of podocytes in a murine model of crescentic glomerulonephritis. Histochem Cell Biol 122:139–149

    Article  CAS  PubMed  Google Scholar 

  3. Moeller MJ, Soofi A, Hartmann I, Le Hir M, Wiggins R, Kriz W et al (2004) Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J Am Soc Nephrol 15:61–67

    Article  PubMed  Google Scholar 

  4. Le Hir M, Keller C, Eschmann V, Hahnel B, Hosser H, Kriz W (2001) Podocyte bridges between the tuft and Bowman’s capsule: an early event in experimental crescentic glomerulonephritis. J Am Soc Nephrol 12:2060–2071

    PubMed  Google Scholar 

  5. Thorner PS, Ho M, Eremina V, Sado Y, Quaggin S (2008) Podocytes contribute to the formation of glomerular crescents. J Am Soc Nephrol 19:495–502

    Article  PubMed Central  PubMed  Google Scholar 

  6. Bariety J, Mandet C, Hill GS, Bruneval P (2006) Parietal podocytes in normal human glomeruli. J Am Soc Nephrol 17:2770–2780

    Article  CAS  PubMed  Google Scholar 

  7. Naish P, Penn GB, Evans DJ, Peters DK (1972) The effect of defibrination on nephrotoxic serum nephritis in rabbits. Clin Sci 42:643–646

    CAS  PubMed  Google Scholar 

  8. Thomson NM, Simpson IJ, Peters DK (1975) A quantitative evaluation of anticoagulants in experimental nephrotoxic nephritis. Clin Exp Immunol 19:301–308

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Wu X, Helfrich MH, Horton MA, Feigen LP, Lefkowith JB (1994) Fibrinogen mediates platelet-polymorphonuclear leukocyte cooperation during immune-complex glomerulonephritis in rats. J Clin Invest 94:928–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Drew AF, Tucker HL, Liu H, Witte DP, Degen JL, Tipping PG (2001) Crescentic glomerulonephritis is diminished in fibrinogen-deficient mice. Am J Physiol Renal Physiol 281:F1157–1163

    CAS  PubMed  Google Scholar 

  11. Cunningham MA, Kitching AR, Tipping PG, Holdsworth SR (2004) Fibrin independent proinflammatory effects of tissue factor in experimental crescentic glomerulonephritis. Kidney Int 66:647–654

    Article  CAS  PubMed  Google Scholar 

  12. Furness PN, Drakeley S (1992) Heparin causes partial removal of glomerular antigen deposits by a mechanism independent of its anticoagulant properties. J Pathol 168:217–220

    Article  CAS  PubMed  Google Scholar 

  13. Drake TA, Cheng J, Chang A, Taylor FB Jr (1993) Expression of tissue factor, thrombomodulin, and E-selectin in baboons with lethal Escherichia coli sepsis. Am J Pathol 142:1458–1470

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264

    Article  CAS  PubMed  Google Scholar 

  15. Coughlin SR, Camerer E (2003) PARticipation in inflammation. J Clin Invest 111:25–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Camerer E, Huang W, Coughlin SR (2000) Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc Natl Acad Sci U S A 97:5255–5260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cunningham MA, Rondeau E, Chen X, Coughlin SR, Holdsworth SR, Tipping PG (2000) Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis. J Exp Med 191:455–462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Moussa L, Apostolopoulos J, Davenport P, Tchongue J, Tipping PG (2007) Protease-activated receptor-2 augments experimental crescentic glomerulonephritis. Am J Pathol 171:800–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Dean EG, Wilson GR, Li M, Edgtton KL, O’Sullivan KM, Hudson BG et al (2005) Experimental autoimmune Goodpasture’s disease: a pathogenetic role for both effector cells and antibody in injury. Kidney Int 67:566–575

    Article  CAS  PubMed  Google Scholar 

  20. Cochrane CG, Unanue ER, Dixon FJ (1965) A role of polymorphonuclear leukocytes and complement in nephrotoxic nephritis. J Exp Med 122:99–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Lerner RA, Glassock RJ, Dixon FJ (1967) The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis. J Exp Med 126:989–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hebert MJ, Takano T, Papayianni A, Rennke HG, Minto A, Salant DJ et al (1998) Acute nephrotoxic serum nephritis in complement knockout mice: relative roles of the classical and alternate pathways in neutrophil recruitment and proteinuria. Nephrol Dial Transplant 13:2799–2803

    Article  CAS  PubMed  Google Scholar 

  23. Sheerin NS, Springall T, Carroll MC, Hartley B, Sacks SH (1997) Protection against anti-glomerular basement membrane (GBM)-mediated nephritis in C3- and C4-deficient mice. Clin Exp Immunol 110:403–409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tang T, Rosenkranz A, Assmann KJ, Goodman MJ, Gutierrez-Ramos JC, Carroll MC et al (1997) A role for Mac-1 (CDIIb/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcgamma receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomerulonephritis. J Exp Med 186:1853–1863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Trouw LA, Groeneveld TW, Seelen MA, Duijs JM, Bajema IM, Prins FA et al (2004) Anti-C1q autoantibodies deposit in glomeruli but are only pathogenic in combination with glomerular C1q-containing immune complexes. J Clin Invest 114:679–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. van den Dobbelsteen ME, van der Woude FJ, Schroeijers WE, Klar-Mohamad N, van Es LA, Daha MR (1996) Both IgG- and C1q-receptors play a role in the enhanced binding of IgG complexes to human mesangial cells. J Am Soc Nephrol 7:573–581

    PubMed  Google Scholar 

  27. Park SY, Ueda S, Ohno H, Hamano Y, Tanaka M, Shiratori T et al (1998) Resistance of Fc receptor-deficient mice to fatal glomerulonephritis. J Clin Invest 102:1229–1238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Anderson CF, Mosser DM (2002) Cutting edge: biasing immune responses by directing antigen to macrophage Fc gamma receptors. J Immunol 168:3697–3701

    Article  CAS  PubMed  Google Scholar 

  29. Tsuboi N, Asano K, Lauterbach M, Mayadas TN (2008) Human neutrophil Fcgamma receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases. Immunity 28:833–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Levy JB, Hammad T, Coulthart A, Dougan T, Pusey CD (2004) Clinical features and outcome of patients with both ANCA and anti-GBM antibodies. Kidney Int 66:1535–1540

    Article  CAS  PubMed  Google Scholar 

  31. Morita T, Suzuki Y, Churg J (1973) Structure and development of the glomerular crescent. Am J Pathol 72:349–368

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Holdsworth SR, Allen DE, Thomson NM, Glasgow EF, Atkins RC (1980) Histochemistry of glomerular cells in animal models of crescentic glomerulonephritis. Pathology 12:339–346

    Article  CAS  PubMed  Google Scholar 

  33. Hancock WW, Atkins RC (1984) Cellular composition of crescents in human rapidly progressive glomerulonephritis identified using monoclonal antibodies. Am J Nephrol 4:177–181

    Article  CAS  PubMed  Google Scholar 

  34. Kurts C, Panzer U, Anders HJ, Rees AJ (2013) The immune system and kidney disease: basic concepts and clinical implications. Nat Rev Immunol 13:738–753

    Article  CAS  PubMed  Google Scholar 

  35. Guo RF, Ward PA (2005) Role of C5a in inflammatory responses. Annu Rev Immunol 23:821–852

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Ramos BF, Jakschik BA (1992) Neutrophil recruitment by tumor necrosis factor from mast cells in immune complex peritonitis. Science 258:1957–1959

    Article  CAS  PubMed  Google Scholar 

  37. Shushakova N, Skokowa J, Schulman J, Baumann U, Zwirner J, Schmidt RE et al (2002) C5a anaphylatoxin is a major regulator of activating versus inhibitory FcgammaRs in immune complex-induced lung disease. J Clin Invest 110:1823–1830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kumar V, Ali SR, Konrad S, Zwirner J, Verbeek JS, Schmidt RE et al (2006) Cell-derived anaphylatoxins as key mediators of antibody-dependent type II autoimmunity in mice. J Clin Invest 116:512–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R (2009) C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol 20:289–298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Summers SA, Steinmetz OM, Li M, Kausman JY, Semple T, Edgtton KL et al (2009) Th1 and Th17 cells induce proliferative glomerulonephritis. J Am Soc Nephrol 20:2518–2524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Turner JE, Krebs C, Tittel AP, Paust HJ, Meyer-Schwesinger C, Bennstein SB et al (2012) IL-17A production by renal gammadelta T cells promotes kidney injury in crescentic GN. J Am Soc Nephrol 23:1486–1495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Paust HJ, Turner JE, Steinmetz OM, Peters A, Heymann F, Holscher C et al (2009) The IL-23/Th17 axis contributes to renal injury in experimental glomerulonephritis. J Am Soc Nephrol 20:969–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Steinmetz OM, Summers SA, Gan PY, Semple T, Holdsworth SR, Kitching AR (2011) The Th17-defining transcription factor RORgammat promotes glomerulonephritis. J Am Soc Nephrol 22:472–483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Riedel JH, Paust HJ, Turner JE, Tittel AP, Krebs C, Disteldorf E et al (2012) Immature renal dendritic cells recruit regulatory CXCR6(+) invariant natural killer T cells to attenuate crescentic GN. J Am Soc Nephrol 23:1987–2000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Piali L, Weber C, LaRosa G, Mackay CR, Springer TA, Clark-Lewis I et al (1998) The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. Eur J Immunol 28:961–972

    Article  CAS  PubMed  Google Scholar 

  46. Panzer U, Steinmetz OM, Paust HJ, Meyer-Schwesinger C, Peters A, Turner JE et al (2007) Chemokine receptor CXCR3 mediates T cell recruitment and tissue injury in nephrotoxic nephritis in mice. J Am Soc Nephrol 18:2071–2084

    Article  CAS  PubMed  Google Scholar 

  47. Menke J, Zeller GC, Kikawada E, Means TK, Huang XR, Lan HY et al (2008) CXCL9, but not CXCL10, Promotes CXCR3-dependent immune-mediated kidney disease. J Am Soc Nephrol 19:1177–1189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Xiao H, Heeringa P, Hu P, Liu Z, Zhao M, Aratani Y et al (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110:955–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kalluri R, Danoff TM, Okada H, Neilson EG (1997) Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice. J Clin Invest 100:2263–2275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Duffield JS, Tipping PG, Kipari T, Cailhier JF, Clay S, Lang R et al (2005) Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. Am J Pathol 167:1207–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Ikezumi Y, Hurst LA, Masaki T, Atkins RC, Nikolic-Paterson DJ (2003) Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation. Kidney Int 63:83–95

    Article  CAS  PubMed  Google Scholar 

  52. Couser WG (2012) Basic and translational concepts of immune-mediated glomerular diseases. J Am Soc Nephrol 23:381–399

    Article  CAS  PubMed  Google Scholar 

  53. Vielhauer V, Kulkarni O, Reichel CA, Anders HJ (2010) Targeting the recruitment of monocytes and macrophages in renal disease. Semin Nephrol 30:318–333

    Article  CAS  PubMed  Google Scholar 

  54. Ma FY, Ikezumi Y, Nikolic-Paterson DJ (2010) Macrophage signaling pathways: a novel target in renal disease. Semin Nephrol 30:334–344

    Article  CAS  PubMed  Google Scholar 

  55. Holness CL, Simmons DL (1994) Structural motifs for recognition and adhesion in members of the immunoglobulin superfamily. J Cell Sci 107(Pt 8):2065–2070

    CAS  PubMed  Google Scholar 

  56. Huang J, Filipe A, Rahuel C, Bonnin P, Mesnard L, Guerin C et al (2014) Lutheran/basal cell adhesion molecule accelerates progression of crescentic glomerulonephritis in mice. Kidney Int 85:1123–1136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Tipping PG, Huang XR, Berndt MC, Holdsworth SR (1994) A role for P selectin in complement-independent neutrophil-mediated glomerular injury. Kidney Int 46:79–88

    Article  CAS  PubMed  Google Scholar 

  58. Kuligowski MP, Kitching AR, Hickey MJ (2006) Leukocyte recruitment to the inflamed glomerulus: a critical role for platelet-derived P-selectin in the absence of rolling. J Immunol 176:6991–6999

    Article  CAS  PubMed  Google Scholar 

  59. Devi S, Li A, Westhorpe CL, Lo CY, Abeynaike LD, Snelgrove SL et al (2013) Multiphoton imaging reveals a new leukocyte recruitment paradigm in the glomerulus. Nat Med 19:107–112

    Article  CAS  PubMed  Google Scholar 

  60. Garcia-Vallejo JJ, van Kooyk Y (2009) Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis. Immunol Rev 230:22–37

    Article  CAS  PubMed  Google Scholar 

  61. Gazi U, Martinez-Pomares L (2009) Influence of the mannose receptor in host immune responses. Immunobiology 214:554–561

    Article  CAS  PubMed  Google Scholar 

  62. Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  63. Chavele KM, Martinez-Pomares L, Domin J, Pemberton S, Haslam SM, Dell A et al (2010) Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice. J Clin Invest 120:1469–1478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Chieppa M, Bianchi G, Doni A, Del Prete A, Sironi M, Laskarin G et al (2003) Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol 171:4552–4560

    Article  CAS  PubMed  Google Scholar 

  65. Kruger T, Benke D, Eitner F, Lang A, Wirtz M, Hamilton-Williams EE et al (2004) Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J Am Soc Nephrol 15:613–621

    Article  PubMed  Google Scholar 

  66. Scholz J, Lukacs-Kornek V, Engel DR, Specht S, Kiss E, Eitner F et al (2008) Renal dendritic cells stimulate IL-10 production and attenuate nephrotoxic nephritis. J Am Soc Nephrol 19:527–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Rees AJ (2010) Monocyte and macrophage biology: an overview. Semin Nephrol 30:216–233

    Article  CAS  PubMed  Google Scholar 

  68. Mesnard L, Keller AC, Michel ML, Vandermeersch S, Rafat C, Letavernier E et al (2009) Invariant natural killer T cells and TGF-beta attenuate anti-GBM glomerulonephritis. J Am Soc Nephrol 20:1282–1292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kuroiwa T, Lee EG (1998) Cellular interactions in the pathogenesis of lupus nephritis: the role of T cells and macrophages in the amplification of the inflammatory process in the kidney. Lupus 7:597–603

    Article  CAS  PubMed  Google Scholar 

  70. Heymann F, Meyer-Schwesinger C, Hamilton-Williams EE, Hammerich L, Panzer U, Kaden S et al (2009) Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest 119:1286–1297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hochheiser K, Engel DR, Hammerich L, Heymann F, Knolle PA, Panzer U et al (2011) Kidney dendritic cells become pathogenic during crescentic glomerulonephritis with proteinuria. J Am Soc Nephrol 22:306–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Garcia-Vallejo JJ, van Kooyk Y (2013) The physiological role of DC-SIGN: a tale of mice and men. Trends Immunol 34:482–486

    Article  CAS  PubMed  Google Scholar 

  73. Cai M, Wu J, Mao C, Ren J, Li P, Li X et al (2013) A Lectin-EGF antibody promotes regulatory T cells and attenuates nephrotoxic nephritis via DC-SIGN on dendritic cells. J Transl Med 11:103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Soos TJ, Sims TN, Barisoni L, Lin K, Littman DR, Dustin ML et al (2006) CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int 70:591–596

    CAS  PubMed  Google Scholar 

  75. Hochheiser K, Heuser C, Krause TA, Teteris S, Ilias A, Weisheit C et al (2013) Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. J Clin Invest 123:4242–4254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Rocklin RE, Lewis EJ, David JR (1970) In vitro evidence for cellular hypersensitivity to glomerular-basement-membrane antigens in human glomerulonephritis. N Engl J Med 283:497–501

    Article  CAS  PubMed  Google Scholar 

  77. Derry CJ, Ross CN, Lombardi G, Mason PD, Rees AJ, Lechler RI et al (1995) Analysis of T cell responses to the autoantigen in Goodpasture’s disease. Clin Exp Immunol 100:262–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Bolton WK, Benton FR, Lobo PI (1978) Requirement of functional T-cells in the production of autoimmune glomerulotubular nephropathy in mice. Clin Exp Immunol 33:474–477

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Bolton WK, Tucker FL, Sturgill BC (1984) New avian model of experimental glomerulonephritis consistent with mediation by cellular immunity. Nonhumorally mediated glomerulonephritis in chickens. J Clin Invest 73:1263–1276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Bolton WK, Chandra M, Tyson TM, Kirkpatrick PR, Sadovnic MJ, Sturgill BC (1988) Transfer of experimental glomerulonephritis in chickens by mononuclear cells. Kidney Int 34:598–610

    Article  CAS  PubMed  Google Scholar 

  81. Wu J, Hicks J, Borillo J, Glass WF 2nd, Lou YH (2002) CD4(+) T cells specific to a glomerular basement membrane antigen mediate glomerulonephritis. J Clin Invest 109:517–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Tipping PG, Holdsworth SR (2006) T cells in crescentic glomerulonephritis. J Am Soc Nephrol 17:1253–1263

    Article  PubMed  Google Scholar 

  83. Kitching AR, Holdsworth SR (2011) The emergence of TH17 cells as effectors of renal injury. J Am Soc Nephrol 22:235–238

    Article  CAS  PubMed  Google Scholar 

  84. Krebs CF, Kapffer S, Paust HJ, Schmidt T, Bennstein SB, Peters A et al (2013) MicroRNA-155 drives TH17 immune response and tissue injury in experimental crescentic GN. J Am Soc Nephrol 24:1955–1965

    Article  CAS  PubMed  Google Scholar 

  85. Phoon RK, Kitching AR, Odobasic D, Jones LK, Semple TJ, Holdsworth SR (2008) T-bet deficiency attenuates renal injury in experimental crescentic glomerulonephritis. J Am Soc Nephrol 19:477–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Tipping PG, Huang XR, Qi M, Van GY, Tang WW (1998) Crescentic glomerulonephritis in CD4- and CD8-deficient mice. Requirement for CD4 but not CD8 cells. Am J Pathol 152:1541–1548

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Kawasaki K, Yaoita E, Yamamoto T, Kihara I (1992) Depletion of CD8 positive cells in nephrotoxic serum nephritis of WKY rats. Kidney Int 41:1517–1526

    Article  CAS  PubMed  Google Scholar 

  88. Li S, Holdsworth SR, Tipping PG (2000) MHC class I pathway is not required for the development of crescentic glomerulonephritis in mice. Clin Exp Immunol 122:453–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. McKinney EF, Lyons PA, Carr EJ, Hollis JL, Jayne DR, Willcocks LC et al (2010) A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat Med 16:586–591, 581p following 591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Bariety J, Bruneval P (2006) Activated parietal epithelial cells or dedifferentiated podocytes in FSGS: can we make the difference? Kidney Int 69:194

    Article  CAS  PubMed  Google Scholar 

  91. Smeets B, Uhlig S, Fuss A, Mooren F, Wetzels JF, Floege J et al (2009) Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J Am Soc Nephrol 20:2604–2615

    Article  PubMed Central  PubMed  Google Scholar 

  92. Ohse T, Vaughan MR, Kopp JB, Krofft RD, Marshall CB, Chang AM et al (2009) De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. Am J Physiol Renal Physiol doi:. doi:10.1152/ajprenal.00428.2009

    Google Scholar 

  93. Steenhard BM, Isom K, Stroganova L, St John PL, Zelenchuk A, Freeburg PB et al (2010) Deletion of von Hippel-Lindau in glomerular podocytes results in glomerular basement membrane thickening, ectopic subepithelial deposition of collagen {alpha}1{alpha}2{alpha}1(IV), expression of neuroglobin, and proteinuria. Am J Pathol 177:84–96

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Brukamp K, Jim B, Moeller MJ, Haase VH (2007) Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. Am J Physiol Renal Physiol 293:F1397–1407

    Article  CAS  PubMed  Google Scholar 

  95. Ding M, Cui S, Li C, Jothy S, Haase V, Steer BM et al (2006) Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat Med 12:1081–1087

    Article  CAS  PubMed  Google Scholar 

  96. van Roeyen CR, Eitner F, Boor P, Moeller MJ, Raffetseder U, Hanssen L et al (2011) Induction of progressive glomerulonephritis by podocyte-specific overexpression of platelet-derived growth factor-D. Kidney Int doi:. doi:10.1038/ki.2011.278

    Google Scholar 

  97. Bollee G, Flamant M, Schordan S, Fligny C, Rumpel E, Milon M et al (2011) Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis. Nat Med 17:1242–1250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Flamant M, Bollee G, Henique C, Tharaux PL (2012) Epidermal growth factor: a new therapeutic target in glomerular disease. Nephrol Dial Transplant 27:1297–1304

    Article  CAS  PubMed  Google Scholar 

  99. Dai Y, Gu L, Yuan W, Yu Q, Ni Z, Ross MJ et al (2013) Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis. Kidney Int doi:. doi:10.1038/ki.2013.197

    Google Scholar 

Download references

Acknowledgments

We apologize to those authors whose important publications could not be quoted in this review owing to space limitations. We thank Pr. Pierre Ronco for critical and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Louis Tharaux.

Additional information

This article is a contribution to the special issue on Immunopathology of Glomerular Diseases - Guest Editors: P. Ronco and J. Floege

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hénique, C., Papista, C., Guyonnet, L. et al. Update on crescentic glomerulonephritis. Semin Immunopathol 36, 479–490 (2014). https://doi.org/10.1007/s00281-014-0435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-014-0435-7

Keywords

Navigation