Skip to main content

Advertisement

Log in

Antimicrobial peptides: natural effectors of the innate immune system

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Antimicrobial peptides (AMPs) are an evolutionarily conserved component of the innate immune system that defend against invading bacteria, viruses, and fungi through membrane or metabolic disruption. The efficiency of host defense via AMPs derives from the ability of these peptides to quickly identify and eradicate foreign pathogens through precise biochemical mechanisms. Recent advances in this field have expanded the repertoire of activities for AMPs to include immunostimulatory and immunomodulatory capacity as a catalyst for secondary host defense mechanisms. Further scrutiny of the biochemical and regulatory mechanisms of AMPs will lead to novel alternative approaches to the treatment of human pathogenic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AM:

adrenomedullin

AMPs:

antimicrobial peptides

CAMP:

cyclic adenosine monophosphate

ChgA:

chromogranin A

CRAMP:

cathelin-related antimicrobial peptide

Cst:

catestatin

Group A Streptococcus :

GAS

HBD:

human beta defensin

HD:

human defensin

HIF:

hypoxia inducible factor

HIV:

human immunodeficiency virus

HNP:

human neutrophil peptide

HPA:

hypothalamic-pituitary-adrenal

HPV:

human papilloma virus

HSV:

herpes simplex virus

IL-8:

interleukin-8

IL-10:

interleukin-10

IP-10:

inflammatory protein-10

TNF:

tumor necrosis factor

VDRE:

vitamin D response element

α-MSH:

α-melanocyte stimulating hormone

NAMPs:

neuro-antimicrobial peptides

NPY:

neuropeptide Y

NK-1:

neurokinin-1

References

  1. Aarbiou J, Rabe KF, Hiemstra PS (2002) Role of defensins in inflammatory lung disease. Ann Med 34:96–101

    PubMed  CAS  Google Scholar 

  2. Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 92:195–199

    PubMed  CAS  Google Scholar 

  3. Ali RS, Falconer A, Ikram M, Bissett CE, Cerio R, Quinn AG (2001) Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol 117:106–111

    PubMed  CAS  Google Scholar 

  4. Allaker RP, Grosvenor PW, McAnerney DC, Sheehan BE, Srikanta BH, Pell K, Kapas S (2006) Mechanisms of adrenomedullin antimicrobial action. Peptides 27:661–666

    PubMed  CAS  Google Scholar 

  5. Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, Wilson JM (1998) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102:874–880

    PubMed  CAS  Google Scholar 

  6. Bals R, Wang X, Meegalla RL, Wattler S, Weiner DJ, Nehls MC, Wilson JM (1999) Mouse beta-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect Immun 67:3542–3547

    PubMed  CAS  Google Scholar 

  7. Bals R, Weiner DJ, Meegalla RL, Wilson JM (1999) Transfer of a cathelicidin peptide antibiotic gene restores bacterial killing in a cystic fibrosis xenograft model. J Clin Invest 103:1113–1117

    PubMed  CAS  Google Scholar 

  8. Banks P, Helle K (1965) The release of protein from the stimulated adrenal medulla. Biochem J 97:40C–41C

    PubMed  CAS  Google Scholar 

  9. Bastian A, Schafer H (2001) Human alpha-defensin 1 (HNP-1) inhibits adenoviral infection in vitro. Regul Pept 101:157–161

    PubMed  CAS  Google Scholar 

  10. Bedoui S, Kawamura N, Straub RH, Pabst R, Yamamura T, von Horsten S (2003) Relevance of neuropeptide Y for the neuroimmune crosstalk. J Neuroimmunol 134:1–11

    PubMed  CAS  Google Scholar 

  11. Befus AD, Mowat C, Gilchrist M, Hu J, Solomon S, Bateman A (1999) Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol 163:947–953

    PubMed  CAS  Google Scholar 

  12. Bellm L, Lehrer RI, Ganz T (2000) Protegrins: new antibiotics of mammalian origin. Expert Opin Investig Drugs 9:1731–1742

    PubMed  CAS  Google Scholar 

  13. Benson BJ, Hadley ME (1969) In vitro characterization of adrenergic receptors controlling skin gland secretion in two anurans Rana pipiens and Xenopus laevis. Comp Biochem Physiol 30:857–864

    PubMed  CAS  Google Scholar 

  14. Bergman P, Johansson L, Wan H, Jones A, Gallo RL, Gudmundsson GH, Hokfelt T, Jonsson AB, Agerberth B (2006) Induction of the antimicrobial peptide CRAMP in the blood-brain barrier and meninges after meningococcal infection. Infect Immun 74:6982–6991

    PubMed  CAS  Google Scholar 

  15. Blankenvoorde MF, van’t Hof W, Walgreen-Weterings E, van Steenbergen TJ, Brand HS, Veerman EC, Nieuw Amerongen AV (1998) Cystatin and cystatin-derived peptides have antibacterial activity against the pathogen Porphyromonas gingivalis. Biol Chem 379:1371–1375

    PubMed  CAS  Google Scholar 

  16. Blomqvist AG, Soderberg C, Lundell I, Milner RJ, Larhammar D (1992) Strong evolutionary conservation of neuropeptide Y: sequences of chicken, goldfish, and Torpedo marmorata DNA clones. Proc Natl Acad Sci USA 89:2350–2354

    PubMed  CAS  Google Scholar 

  17. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984

    PubMed  CAS  Google Scholar 

  18. Boman HG (1994) Antimicrobial peptides. Chairman’s opening remarks. Ciba Found Symp 186:1–4

    PubMed  CAS  Google Scholar 

  19. Boman HG (1998) Gene-encoded peptide antibiotics and the concept of innate immunity: an update review. Scand J Immunol 48:15–25

    PubMed  CAS  Google Scholar 

  20. Braff MH, Bardan A, Nizet V, Gallo RL (2005) Cutaneous defense mechanisms by antimicrobial peptides. J Invest Dermatol 125:9–13

    PubMed  CAS  Google Scholar 

  21. Braff MH, Di Nardo A, Gallo RL (2005) Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol 124:394–400

    PubMed  CAS  Google Scholar 

  22. Braff MH, Gallo RL (2006) Antimicrobial peptides: an essential component of the skin defensive barrier. Curr Top Microbiol Immunol 306:91–110

    PubMed  CAS  Google Scholar 

  23. Briolat J, Wu SD, Mahata SK, Gonthier B, Bagnard D, Chasserot-Golaz S, Helle KB, Aunis D, Metz-Boutigue MH (2005) New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci 62:377–385

    PubMed  CAS  Google Scholar 

  24. Brogden KA, Ackermann M, McCray PB Jr, Tack BF (2003) Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents 22:465–478

    PubMed  CAS  Google Scholar 

  25. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    PubMed  CAS  Google Scholar 

  26. Brogden KA, Guthmiller JM, Salzet M, Zasloff M (2005) The nervous system and innate immunity: the neuropeptide connection. Nat Immunol 6:558–564

    PubMed  CAS  Google Scholar 

  27. Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT (2006) Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci USA 103:1516–1521

    PubMed  CAS  Google Scholar 

  28. Burman LG, Lundblad G, Camner P, Fange R, Lundborg M, Soder P (1991) [Lysozyme-an enzyme of both historical and current interest as a therapeutical agent]. Lakartidningen 88:3665–3668

    PubMed  CAS  Google Scholar 

  29. Butmarc J, Yufit T, Carson P, Falanga V (2004) Human beta-defensin-2 expression is increased in chronic wounds. Wound Repair Regen 12:439–443

    PubMed  Google Scholar 

  30. Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA (2004) Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 72:7107–7114

    PubMed  CAS  Google Scholar 

  31. Chalifour A, Jeannin P, Gauchat JF, Blaecke A, Malissard M, N’Guyen T, Thieblemont N, Delneste Y (2004) Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood 104:1778–1783

    PubMed  CAS  Google Scholar 

  32. Chaly YV, Paleolog EM, Kolesnikova TS, Tikhonov II, Petratchenko EV, Voitenok NN (2000) Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw 11:257–266

    PubMed  CAS  Google Scholar 

  33. Christensen B, Fink J, Merrifield RB, Mauzerall D (1988) Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci USA 85:5072–5076

    PubMed  CAS  Google Scholar 

  34. Christophers E, Henseler T (1987) Contrasting disease patterns in psoriasis and atopic dermatitis. Arch Dermatol Res 279 Suppl:S48–S51

    PubMed  Google Scholar 

  35. Chromek M, Slamova Z, Bergman P, Kovacs L, Podracka L, Ehren I, Hokfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641

    PubMed  CAS  Google Scholar 

  36. Cociancich S, Ghazi A, Hetru C, Hoffmann JA, Letellier L (1993) Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. J Biol Chem 268:19239–19245

    PubMed  CAS  Google Scholar 

  37. Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI (2002) Retrocyclin:a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci USA 99:1813–1818

    PubMed  CAS  Google Scholar 

  38. Com E, Bourgeon F, Evrard B, Ganz T, Colleu D, Jegou B, Pineau C (2003) Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol Reprod 68:95–104

    PubMed  CAS  Google Scholar 

  39. Cunliffe RN, Kamal M, Rose FR, James PD, Mahida YR (2002) Expression of antimicrobial neutrophil defensins in epithelial cells of active inflammatory bowel disease mucosa. J Clin Pathol 55:298–304

    PubMed  CAS  Google Scholar 

  40. Cutuli M, Cristiani S, Lipton JM, Catania A (2000) Antimicrobial effects of alpha-MSH peptides. J Leukoc Biol 67:233–239

    PubMed  CAS  Google Scholar 

  41. Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, Hancock RE, Speert DP (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172:1146–1156

    PubMed  CAS  Google Scholar 

  42. De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192:1069–1074

    Google Scholar 

  43. Di Nardo A, Vitiello A, Gallo RL (2003) Cutting edge: mast cell antimicrobial activity is mediated by expression of cathelicidin antimicrobial peptide. J Immunol 170:2274–2278

    PubMed  Google Scholar 

  44. Dieu-Nosjean MC, Vicari A, Lebecque S, Caux C (1999) Regulation of dendritic cell trafficking: a process that involves the participation of selective chemokines. J Leukoc Biol 66:252–262

    PubMed  CAS  Google Scholar 

  45. Dillen L, Miserez B, Claeys M, Aunis D, De Potter W (1993) Posttranslational processing of proenkephalins and chromogranins/secretogranins. Neurochem Int 22:315–352

    PubMed  CAS  Google Scholar 

  46. Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL (2001) Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117:91–97

    PubMed  CAS  Google Scholar 

  47. Dorschner RA, Lopez-Garcia B, Peschel A, Kraus D, Morikawa K, Nizet V, Gallo RL (2006) The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. Faseb J 20:35–42

    PubMed  CAS  Google Scholar 

  48. Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, Goetinck P (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107:R9–R14

    PubMed  CAS  Google Scholar 

  49. Eisenhauer PB, Lehrer RI (1992) Mouse neutrophils lack defensins. Infect Immun 60:3446–3447

    PubMed  CAS  Google Scholar 

  50. Elsasser TH, Kahl S, Martinez A, Montuenga LM, Pio R, Cuttitta F (1999) Adrenomedullin binding protein in the plasma of multiple species: characterization by radioligand blotting. Endocrinology 140:4908–4911

    PubMed  CAS  Google Scholar 

  51. Eskeland NL, Zhou A, Dinh TQ, Wu H, Parmer RJ, Mains RE, O’Connor DT (1996) Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway. J Clin Invest 98:148–156

    PubMed  CAS  Google Scholar 

  52. Fang XM, Shu Q, Chen QX, Book M, Sahl HG, Hoeft A, Stuber F (2003) Differential expression of alpha- and beta-defensins in human peripheral blood. Eur J Clin Invest 33:82–87

    PubMed  CAS  Google Scholar 

  53. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, Gudmundsson GH (1997) The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 272:15258–15263

    PubMed  CAS  Google Scholar 

  54. Fulton C, Anderson GM, Zasloff M, Bull R, Quinn AG (1997) Expression of natural peptide antibiotics in human skin. Lancet 350:1750–1751

    PubMed  CAS  Google Scholar 

  55. Furci L, Sironi F, Tolazzi M, Vassena L, Lusso P (2006) {alpha}-defensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4. Blood DOI 10.1182/blood-2006-05-024489

  56. Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M, Bernfield M (1994) Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91:11035–11039

    PubMed  CAS  Google Scholar 

  57. Gallo RL, Kim KJ, Bernfield M, Kozak CA, Zanetti M, Merluzzi L, Gennaro R (1997) Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 272:13088–13093

    PubMed  CAS  Google Scholar 

  58. Gallo RL, Huttner KM (1998) Antimicrobial peptides: an emerging concept in cutaneous biology. J Invest Dermatol 111:739–743

    PubMed  CAS  Google Scholar 

  59. Gallo RL, Murakami M, Ohtake T, Zaiou M (2002) Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol 110:823–831

    PubMed  CAS  Google Scholar 

  60. Gallo RL, Nizet V (2003) Endogenous production of antimicrobial peptides in innate immunity and human disease. Curr Allergy Asthma Rep 3:402–409

    PubMed  Google Scholar 

  61. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435

    PubMed  CAS  Google Scholar 

  62. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    PubMed  CAS  Google Scholar 

  63. Garcia JR, Jaumann F, Schulz S, Krause A, Rodriguez-Jimenez J, Forssmann U, Adermann K, Kluver E, Vogelmeier C, Becker D, Hedrich R, Forssmann WG, Bals R (2001) Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res 306:257–264

    PubMed  CAS  Google Scholar 

  64. Garcia JR, Krause A, Schulz S, Rodriguez-Jimenez FJ, Kluver E, Adermann K, Forssmann U, Frimpong-Boateng A, Bals R, Forssmann WG (2001) Human beta-defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. Faseb J 15:1819–1821

    PubMed  CAS  Google Scholar 

  65. Glaser R, Harder J, Lange H, Bartels J, Christophers E, Schroder JM (2005) Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 6:57–64

    PubMed  Google Scholar 

  66. Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560

    PubMed  CAS  Google Scholar 

  67. Grieco P, Rossi C, Colombo G, Gatti S, Novellino E, Lipton JM, Catania A (2003) Novel alpha-melanocyte stimulating hormone peptide analogues with high candidacidal activity. J Med Chem 46:850–855

    PubMed  CAS  Google Scholar 

  68. Groisman EA (1994) How bacteria resist killing by host-defense peptides. Trends Microbiol 2:444–449

    PubMed  CAS  Google Scholar 

  69. Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861

    PubMed  CAS  Google Scholar 

  70. Harder J, Siebert R, Zhang Y, Matthiesen P, Christophers E, Schlegelberger B, Schroder JM (1997) Mapping of the gene encoding human beta-defensin-2 (DEFB2) to chromosome region 8p22-p23.1. Genomics 46:472–475

    PubMed  CAS  Google Scholar 

  71. Harder J, Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784

    PubMed  CAS  Google Scholar 

  72. Harwig SS, Ganz T, Lehrer RI (1994) Neutrophil defensins: purification, characterization, and antimicrobial testing. Methods Enzymol 236:160–172

    PubMed  CAS  Google Scholar 

  73. Hase K, Eckmann L, Leopard JD, Varki N, Kagnoff MF (2002) Cell differentiation is a key determinant of cathelicidin LL-37/human cationic antimicrobial protein 18 expression by human colon epithelium. Infect Immun 70:953–963

    PubMed  CAS  Google Scholar 

  74. Hazrati E, Galen B, Lu W, Wang W, Ouyang Y, Keller MJ, Lehrer RI, Herold BC (2006) Human alpha- and beta-defensins block multiple steps in herpes simplex virus infection. J Immunol 177:8658–8666

    PubMed  CAS  Google Scholar 

  75. Heilborn JD, Nilsson MF, Kratz G, Weber G, Sorensen O, Borregaard N, Stahle-Backdahl M (2003) The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120:379–389

    PubMed  CAS  Google Scholar 

  76. Henzler-Wildman KA, Martinez GV, Brown MF, Ramamoorthy A (2004) Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37. Biochemistry 43:8459–8469

    PubMed  CAS  Google Scholar 

  77. Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DY (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J Immunol 172:1763–1767

    PubMed  CAS  Google Scholar 

  78. Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174:4901–4907

    PubMed  CAS  Google Scholar 

  79. Islam D, Bandholtz L, Nilsson J, Wigzell H, Christensson B, Agerberth B, Gudmundsson G (2001) Downregulation of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat Med 7:180–185

    PubMed  CAS  Google Scholar 

  80. Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52:381–390; quiz 391–382

    PubMed  Google Scholar 

  81. Jiang Q, Taupenot L, Mahata SK, Mahata M, O’Connor DT, Miles LA, Parmer RJ (2001) Proteolytic cleavage of chromogranin A (CgA) by plasmin. Selective liberation of a specific bioactive CgA fragment that regulates catecholamine release. J Biol Chem 276:25022–25029

    PubMed  CAS  Google Scholar 

  82. Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273:3718–3724

    PubMed  CAS  Google Scholar 

  83. Jones DE, Bevins CL (1992) Paneth cells of the human small intestine express an antimicrobial peptide gene. J Biol Chem 267:23216–23225

    PubMed  CAS  Google Scholar 

  84. Jones DE, Bevins CL (1993) Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett 315:187–192

    PubMed  CAS  Google Scholar 

  85. Kagan BL, Selsted ME, Ganz T, Lehrer RI (1990) Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 87:210–214

    PubMed  CAS  Google Scholar 

  86. Kido MA, Yamaza T, Goto T, Tanaka T (1999) Immunocytochemical localization of substance P neurokinin-1 receptors in rat gingival tissue. Cell Tissue Res 297:213–222

    PubMed  CAS  Google Scholar 

  87. Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111:1665–1672

    PubMed  CAS  Google Scholar 

  88. Komatsu N, Takata M, Otsuki N, Toyama T, Ohka R, Takehara K, Saijoh K (2003) Expression and localization of tissue kallikrein mRNAs in human epidermis and appendages. J Invest Dermatol 121:542–549

    PubMed  CAS  Google Scholar 

  89. Kowalska K, Carr DB, Lipkowski AW (2002) Direct antimicrobial properties of substance P. Life Sci 71:747–750

    PubMed  CAS  Google Scholar 

  90. Kristian SA, Durr M, Van Strijp JA, Neumeister B, Peschel A (2003) MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect Immun 71:546–549

    PubMed  CAS  Google Scholar 

  91. Kristian SA, Timmer AM, Liu GY, Lauth X, Sal-Man N, Rosenfeld Y, Shai Y, Gallo RL, Nizet V (2007) Impairment of innate immune killing mechanisms by bacteriostatic antibiotics. Faseb J DOI 10.1096/fj.06-6802com

  92. Kruger PG, Mahata SK, Helle KB (2003) Catestatin (CgA344-364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. Regul Pept 114:29–35

    PubMed  CAS  Google Scholar 

  93. Lee JC, Taylor CV, Gaucher SP, Toneff T, Taupenot L, Yasothornsrikul S, Mahata SK, Sei C, Parmer RJ, Neveu JM, Lane WS, Gibson BW, O’Connor DT, Hook VY (2003) Primary sequence characterization of catestatin intermediates and peptides defines proteolytic cleavage sites utilized for converting chromogranin a into active catestatin secreted from neuroendocrine chromaffin cells. Biochemistry 42:6938–6946

    PubMed  CAS  Google Scholar 

  94. Lehrer RI, Szklarek D, Ganz T, Selsted ME (1986) Synergistic activity of rabbit granulocyte peptides against Candida albicans. Infect Immun 52:902–904

    PubMed  CAS  Google Scholar 

  95. Leonova L, Kokryakov VN, Aleshina G, Hong T, Nguyen T, Zhao C, Waring AJ, Lehrer RI (2001) Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol 70:461–464

    PubMed  CAS  Google Scholar 

  96. Lewis LK, Smith MW, Brennan SO, Yandle TG, Richards AM, Nicholls MG (1997) Degradation of human adrenomedullin(1-52) by plasma membrane enzymes and identification of metabolites. Peptides 18:733–739

    PubMed  CAS  Google Scholar 

  97. Lugardon K, Raffner R, Goumon Y, Corti A, Delmas A, Bulet P, Aunis D, Metz-Boutigue MH (2000) Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem 275:10745–10753

    PubMed  CAS  Google Scholar 

  98. Lundy FT, Linden GJ (2004) Neuropeptides and neurogenic mechanisms in oral and periodontal inflammation. Crit Rev Oral Biol Med 15:82–98

    Article  PubMed  Google Scholar 

  99. Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, Levy JA (2003) alpha-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. Aids 17:F23–F32

    PubMed  CAS  Google Scholar 

  100. Maget-Dana R, Metz-Boutigue MH, Helle KB (2002) The N-terminal domain of chromogranin A (CgA1-40) interacts with monolayers of membrane lipids of fungal and mammalian compositions. Ann N Y Acad Sci 971:352–354

    Article  PubMed  CAS  Google Scholar 

  101. Mahata SK, O’Connor DT, Mahata M, Yoo SH, Taupenot L, Wu H, Gill BM, Parmer RJ (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest 100:1623–1633

    PubMed  CAS  Google Scholar 

  102. Martinez A, Hodge DL, Garayoa M, Young HA, Cuttitta F (2001) Alternative splicing of the proadrenomedullin gene results in differential expression of gene products. J Mol Endocrinol 27:31–41

    PubMed  CAS  Google Scholar 

  103. Metz-Boutigue MH, Lugardon K, Goumon Y, Raffner R, Strub JM, Aunis D (2000) Antibacterial and antifungal peptides derived from chromogranins and proenkephalin-A. From structural to biological aspects. Adv Exp Med Biol 482:299–315

    PubMed  CAS  Google Scholar 

  104. Milner SM, Ortega MR (1999) Reduced antimicrobial peptide expression in human burn wounds. Burns 25:411–413

    PubMed  CAS  Google Scholar 

  105. Muller FB, Muller-Rover S, Korge BP, Kapas S, Hinson JP, Philpott MP (2003) Adrenomedullin: expression and possible role in human skin and hair growth. Br J Dermatol 148:30–38

    PubMed  CAS  Google Scholar 

  106. Murakami M, Ohtake T, Dorschner RA, Gallo RL (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81:845–850

    PubMed  CAS  Google Scholar 

  107. Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL (2002) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119:1090–1095

    PubMed  CAS  Google Scholar 

  108. Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL (2004) Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172:3070–3077

    PubMed  CAS  Google Scholar 

  109. Nakayama K, Okamura N, Arai H, Sekizawa K, Sasaki H (1999) Expression of human beta-defensin-1 in the choroid plexus. Ann Neurol 45:685

    PubMed  CAS  Google Scholar 

  110. Nguyen TX, Cole AM, Lehrer RI (2003) Evolution of primate theta-defensins: a serpentine path to a sweet tooth. Peptides 24:1647–1654

    PubMed  CAS  Google Scholar 

  111. Niyonsaba F, Ushio H, Nakano N, Ng W, Sayama K, Hashimoto K, Nagaoka I, Okumura K, Ogawa H (2007) Antimicrobial Peptides Human beta-Defensins Stimulate Epidermal Keratinocyte Migration, Proliferation and Production of Proinflammatory Cytokines and Chemokines. J Invest Dermatol 127(3):594–604

    PubMed  CAS  Google Scholar 

  112. Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, Pestonjamasp V, Piraino J, Huttner K, Gallo RL (2001) Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414:454–457

    PubMed  CAS  Google Scholar 

  113. Nizet V, Gallo RL (2003) Cathelicidins and innate defense against invasive bacterial infection. Scand J Infect Dis 35:670–676

    PubMed  CAS  Google Scholar 

  114. O’Connor DT (1983) Chromogranin: widespread immunoreactivity in polypeptide hormone producing tissues and in serum. Regul Pept 6:263–280

    PubMed  CAS  Google Scholar 

  115. O’Connor DT, Burton D, Deftos LJ (1983) Chromogranin A: immunohistology reveals its universal occurrence in normal polypeptide hormone producing endocrine glands. Life Sci 33:1657–1663

    PubMed  CAS  Google Scholar 

  116. O’Neil DA, Porter EM, Elewaut D, Anderson GM, Eckmann L, Ganz T, Kagnoff MF (1999) Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 163:6718–6724

    PubMed  CAS  Google Scholar 

  117. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160

    PubMed  CAS  Google Scholar 

  118. Ouellette AJ, Hsieh MM, Nosek MT, Cano-Gauci DF, Huttner KM, Buick RN, Selsted ME (1994) Mouse Paneth cell defensins: primary structures and antibacterial activities of numerous cryptdin isoforms. Infect Immun 62:5040–5047

    PubMed  CAS  Google Scholar 

  119. Panyutich AV, Hiemstra PS, van Wetering S, Ganz T (1995) Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol 12:351–357

    PubMed  CAS  Google Scholar 

  120. Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 97:8245–8250

    PubMed  CAS  Google Scholar 

  121. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Gotz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410

    PubMed  CAS  Google Scholar 

  122. Peschel A, Collins LV (2001) Staphylococcal resistance to antimicrobial peptides of mammalian and bacterial origin. Peptides 22:1651–1659

    PubMed  CAS  Google Scholar 

  123. Peyssonaux C, Johnson RS (2004) An unexpected role for hypoxic response: oxygenation and inflammation. Cell Cycle 3:168–171

    PubMed  Google Scholar 

  124. Raj PA, Dentino AR (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett 206:9–18

    PubMed  CAS  Google Scholar 

  125. Ritonja A, Kopitar M, Jerala R, Turk V (1989) Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Lett 255:211–214

    PubMed  CAS  Google Scholar 

  126. Russell JP, Diamond G, Tarver AP, Scanlin TF, Bevins CL (1996) Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha. Infect Immun 64:1565–1568

    PubMed  CAS  Google Scholar 

  127. Satchell DP, Sheynis T, Shirafuji Y, Kolusheva S, Ouellette AJ, Jelinek R (2003) Interactions of mouse Paneth cell alpha-defensins and alpha-defensin precursors with membranes. Prosegment inhibition of peptide association with biomimetic membranes. J Biol Chem 278:13838–13846

    PubMed  CAS  Google Scholar 

  128. Sayama K, Komatsuzawa H, Yamasaki K, Shirakata Y, Hanakawa Y, Ouhara K, Tokumaru S, Dai X, Tohyama M, Ten Dijke P, Sugai M, Ichijo H, Hashimoto K (2005) New mechanisms of skin innate immunity: ASK1-mediated keratinocyte differentiation regulates the expression of beta-defensins, LL37, and TLR2. Eur J Immunol 35:1886–1895

    PubMed  CAS  Google Scholar 

  129. Schauber J, Dorschner RA, Yamasaki K, Brouha B, Gallo RL (2006) Control of the innate epithelial antimicrobial response is cell-type specific and dependent on relevant microenvironmental stimuli. Immunology 118:509–519

    PubMed  CAS  Google Scholar 

  130. Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137

    PubMed  CAS  Google Scholar 

  131. Scholzen T, Armstrong CA, Bunnett NW, Luger TA, Olerud JE, Ansel JC (1998) Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp Dermatol 7:81–96

    PubMed  CAS  Google Scholar 

  132. Schroder JM (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sci 56:32–46

    PubMed  CAS  Google Scholar 

  133. Schroder JM, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31:645–651

    PubMed  CAS  Google Scholar 

  134. Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB Jr (2002) Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA 99:2129–2133

    PubMed  CAS  Google Scholar 

  135. Scocchi M, Wang S, Zanetti M (1997) Structural organization of the bovine cathelicidin gene family and identification of a novel member. FEBS Lett 417:311–315

    PubMed  CAS  Google Scholar 

  136. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    PubMed  CAS  Google Scholar 

  137. Shimizu M, Shigeri Y, Tatsu Y, Yoshikawa S, Yumoto N (1998) Enhancement of antimicrobial activity of neuropeptide Y by N-terminal truncation. Antimicrob Agents Chemother 42:2745–2746

    PubMed  CAS  Google Scholar 

  138. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679

    PubMed  CAS  Google Scholar 

  139. Simmaco M, Boman A, Mangoni ML, Mignogna G, Miele R, Barra D, Boman HG (1997) Effect of glucocorticoids on the synthesis of antimicrobial peptides in amphibian skin. FEBS Lett 416:273–275

    PubMed  CAS  Google Scholar 

  140. Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    PubMed  CAS  Google Scholar 

  141. Sitaram N, Nagaraj R (2002) Host-defense antimicrobial peptides:importance of structure for activity. Curr Pharm Des 8:727–742

    PubMed  CAS  Google Scholar 

  142. Smith JJ, Travis SM, Greenberg EP, Welsh MJ (1996) Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85:229–236

    PubMed  CAS  Google Scholar 

  143. Sohnle PG, Hunter MJ, Hahn B, Chazin WJ (2000) Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis 182:1272–1275

    PubMed  CAS  Google Scholar 

  144. Sorensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, Borregaard N (2001) Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:3951–3959

    PubMed  CAS  Google Scholar 

  145. Sorensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T (2005) Differential regulation of beta-defensin expression in human skin by microbial stimuli. J Immunol 174:4870–4879

    PubMed  CAS  Google Scholar 

  146. Sorensen OE, Thapa DR, Roupe KM, Valore EV, Sjobring U, Roberts AA, Schmidtchen A, Ganz T (2006) Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest 116:1878–1885

    PubMed  CAS  Google Scholar 

  147. Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292:246–248

    PubMed  CAS  Google Scholar 

  148. Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318–328

    PubMed  CAS  Google Scholar 

  149. Storici P, Tossi A, Lenarcic B, Romeo D (1996) Purification and structural characterization of bovine cathelicidins, precursors of antimicrobial peptides. Eur J Biochem 238:769–776

    PubMed  CAS  Google Scholar 

  150. Strub JM, Garcia-Sablone P, Lonning K, Taupenot L, Hubert P, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1995) Processing of chromogranin B in bovine adrenal medulla. Identification of secretolytin, the endogenous C-terminal fragment of residues 614-626 with antibacterial activity. Eur J Biochem 229:356–368

    PubMed  CAS  Google Scholar 

  151. Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1996) Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173-194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271:28533–28540

    PubMed  CAS  Google Scholar 

  152. Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160:91–96

    PubMed  CAS  Google Scholar 

  153. Takahashi M, Tezuka T, Katunuma N (1994) Inhibition of growth and cysteine proteinase activity of Staphylococcus aureus V8 by phosphorylated cystatin alpha in skin cornified envelope. FEBS Lett 355:275–278

    PubMed  CAS  Google Scholar 

  154. Taupenot L, Mahata M, Mahata SK, Wu H, O’Connor DT (2000) Regulation of chromogranin A transcription and catecholamine secretion by the neuropeptide PACAP. Stimulation and desensitization. Adv Exp Med Biol 482:97–111

    PubMed  CAS  Google Scholar 

  155. Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149

    PubMed  CAS  Google Scholar 

  156. Taylor AW, Yee DG, Nishida T, Namba K (2000) Neuropeptide regulation of immunity. The immunosuppressive activity of alpha-melanocyte-stimulating hormone (alpha-MSH). Ann N Y Acad Sci 917:239–247

    Article  PubMed  CAS  Google Scholar 

  157. Tomita T, Hitomi S, Nagase T, Matsui H, Matsuse T, Kimura S, Ouchi Y (2000) Effect of ions on antibacterial activity of human beta defensin 2. Microbiol Immunol 44:749–754

    PubMed  CAS  Google Scholar 

  158. Tran D, Tran PA, Tang YQ, Yuan J, Cole T, Selsted ME (2002) Homodimeric theta-defensins from rhesus macaque leukocytes: isolation, synthesis, antimicrobial activities, and bacterial binding properties of the cyclic peptides. J Biol Chem 277:3079–3084

    PubMed  CAS  Google Scholar 

  159. Tsigelny I, Mahata SK, Taupenot L, Preece NE, Mahata M, Khan I, Parmer RJ, O’Connor DT (1998) Mechanism of action of chromogranin A on catecholamine release: molecular modeling of the catestatin region reveals a beta-strand/loop/beta-strand structure secured by hydrophobic interactions and predictive of activity. Regul Pept 77:43–53

    PubMed  CAS  Google Scholar 

  160. Ubink R, Hokfelt T (2000) Expression of neuropeptide Y in olfactory ensheathing cells during prenatal development. J Comp Neurol 423:13–25

    PubMed  CAS  Google Scholar 

  161. Valore EV, Ganz T (1992) Posttranslational processing of defensins in immature human myeloid cells. Blood 79:1538–1544

    PubMed  CAS  Google Scholar 

  162. Valore EV, Park CH, Quayle AJ, Wiles KR, McCray PB Jr, Ganz T (1998) Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest 101:1633–1642

    PubMed  CAS  Google Scholar 

  163. Van Wetering S, Mannesse-Lazeroms SP, Van Sterkenburg MA, Daha MR, Dijkman JH, Hiemstra PS (1997) Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am J Physiol 272:L888–L896

    PubMed  Google Scholar 

  164. van Wetering S, Mannesse-Lazeroms SP, van Sterkenburg MA, Hiemstra PS (2002) Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm Res 51:8–15

    PubMed  Google Scholar 

  165. Vouldoukis I, Shai Y, Nicolas P, Mor A (1996) Broad spectrum antibiotic activity of the skin-PYY. FEBS Lett 380:237–240

    PubMed  CAS  Google Scholar 

  166. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Hanrahan JW, Mader S, White JH (2004) Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173:2909–2912

    PubMed  CAS  Google Scholar 

  167. Webster JI, Tonelli L, Sternberg EM (2002) Neuroendocrine regulation of immunity. Annu Rev Immunol 20:125–163

    PubMed  CAS  Google Scholar 

  168. Wehkamp J, Fellermann K, Herrlinger KR, Baxmann S, Schmidt K, Schwind B, Duchrow M, Wohlschlager C, Feller AC, Stange EF (2002) Human beta-defensin 2 but not beta-defensin 1 is expressed preferentially in colonic mucosa of inflammatory bowel disease. Eur J Gastroenterol Hepatol 14:745–752

    PubMed  CAS  Google Scholar 

  169. Wikberg JE, Muceniece R, Mandrika I, Prusis P, Lindblom J, Post C, Skottner A (2000) New aspects on the melanocortins and their receptors. Pharmacol Res 42:393–420

    PubMed  CAS  Google Scholar 

  170. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL, Hultgren SJ, Matrisian LM, Parks WC (1999) Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    PubMed  CAS  Google Scholar 

  171. Wu Z, Prahl A, Powell R, Ericksen B, Lubkowski J, Lu W (2003) From pro defensins to defensins: synthesis and characterization of human neutrophil pro alpha-defensin-1 and its mature domain. J Pept Res 62:53–62

    PubMed  CAS  Google Scholar 

  172. Yamaguchi Y, Nagase T, Makita R, Fukuhara S, Tomita T, Tominaga T, Kurihara H, Ouchi Y (2002) Identification of multiple novel epididymis-specific beta-defensin isoforms in humans and mice. J Immunol 169:2516–2523

    PubMed  CAS  Google Scholar 

  173. Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, Bonnart C, Descargues P, Hovnanian A, Gallo RL (2006) Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. Faseb J 20:2068–2080

    PubMed  CAS  Google Scholar 

  174. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroder JM, Wang JM, Howard OM, Oppenheim JJ (1999) Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286:525–528

    PubMed  CAS  Google Scholar 

  175. Zaiou M, Nizet V, Gallo RL (2003) Antimicrobial and protease inhibitory functions of the human cathelicidin (hCAP18/LL-37) prosequence. J Invest Dermatol 120:810–816

    PubMed  CAS  Google Scholar 

  176. Zaks-Zilberman M, Salkowski CA, Elsasser T, Cuttitta F, Vogel SN (1998) Induction of adrenomedullin mRNA and protein by lipopolysaccharide and paclitaxel (Taxol) in murine macrophages. Infect Immun 66:4669–4675

    PubMed  CAS  Google Scholar 

  177. Zanetti M, Gennaro R, Romeo D (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett 374:1–5

    PubMed  CAS  Google Scholar 

  178. Zanetti M, Gennaro R, Scocchi M, Skerlavaj B (2000) Structure and biology of cathelicidins. Adv Exp Med Biol 479:203–218

    Article  PubMed  CAS  Google Scholar 

  179. Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453

    PubMed  CAS  Google Scholar 

  180. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    PubMed  CAS  Google Scholar 

  181. Zhao C, Wang I, Lehrer RI (1996) Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett 396:319–322

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Gallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radek, K., Gallo, R. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29, 27–43 (2007). https://doi.org/10.1007/s00281-007-0064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-007-0064-5

Keywords

Navigation