Skip to main content
Log in

EVs delivery of miR-1915-3p improves the chemotherapeutic efficacy of oxaliplatin in colorectal cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Oxaliplatin is a crucial component of the combinatorial chemotherapeutic standard of care for advanced colorectal cancer (CRC). Unfortunately, a serious barrier to effective oxaliplatin treatment is drug resistance due to epithelial-mesenchymal transitioning (EMT). Interestingly, stable oxaliplatin-resistant CRC cell lines show differential expression of miR-1915-3p; thus, this microRNA may represent a potential modifier of oxaliplatin resistance in CRC cells.

Methods

miR-1915-3p was over-expressed in oxaliplatin-resistant CRC cells and a non-tumorigenic intestinal cell line (FHC) via lentiviral transduction. Extracellular vesicles (EVs) were purified from transduced FHC cells and co-incubated with CRC cells. Expression levels of miR-1915-3p and other RNA species were assessed by RT-qPCR, while protein expression levels were assessed by Western blotting. The effects of miR-1915-3p on CRC viability were evaluated by proliferation, apoptosis assays, and Transwell assays. Effects of miR-1915-3p over-expression on in vivo oxaliplatin sensitivity was tested via murine xenograft models.

Results

miRNA-1915-3p decreased EMT marker expression in oxaliplatin-resistant CRC cell lines and in vivo. FHC cells were able to produce and secrete miR-1915-3p-containing EVs, which we employed to mediate miR-1915-3p delivery to oxaliplatin-resistant CRC cells and increase their oxaliplatin sensitivity in vivo and in vitro. Mechanistically, miR-1915-3p overexpression downregulated the EMT-promoting oncogenes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and ubiquitin carboxyl-terminal hydrolase 2 (USP2) as well as upregulated E-cadherin (a cell adhesion mediator). miR-1915-3p’s effects on chemosensitivity and EMT were mediated by its regulation of PFKFB3 and USP2.

Conclusion

Exosomal delivery of miR-1915-3p can improve the chemotherapeutic efficacy of oxaliplatin in CRC cells by suppressing the EMT-promoting oncogenes PFKFB3 and USP2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Please contact author for data requests.

References

  1. Allen KE, Weiss GJ (2010) Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 9:3126–3136

    Article  CAS  PubMed  Google Scholar 

  2. Altanerova U, Jakubechova J, Benejova K, Priscakova P, Pesta M, Pitule P, Topolcan O, Kausitz J, Zduriencikova M, Repiska V (2019) Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes. Int J Cancer 144:897–908

    Article  PubMed  CAS  Google Scholar 

  3. Arango D, Wilson A, Shi Q, Corner G, Aranes M, Nicholas C, Lesser M, Mariadason J, Augenlicht LH (2004) Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br J Cancer 91:1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benassi B, Flavin R, Marchionni L, Zanata S, Pan Y, Chowdhury D, Marani M, Strano S, Muti P, Blandino G (2012) MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov 2:236–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:846

    Article  CAS  PubMed  Google Scholar 

  7. Boni V, Bitarte N, Cristobal I, Zarate R, Rodriguez J, Maiello E, Garcia-Foncillas J, Bandres E (2010) miR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidilate synthase regulation. Mol Cancer Ther 9:2265–2275

    Article  CAS  PubMed  Google Scholar 

  8. Brown EJ, Frazier WA (2001) Integrin-associated protein (CD47) and its ligands. Trends Cell Biol 11:130–135

    Article  CAS  PubMed  Google Scholar 

  9. Calvo M, Bartrons R, Castano E, Perales J, Navarro-Sabate A, Manzano A (2006) PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. FEBS Lett 580:3308–3314

    Article  CAS  PubMed  Google Scholar 

  10. Chai H, Liu M, Tian R, Li X, Tang H (2011) miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim Biophys Sin 43:217–225

    Article  CAS  PubMed  Google Scholar 

  11. Cheshomi H, Matin MM (2019) Exosomes and their importance in metastasis, diagnosis, and therapy of colorectal cancer. J Cell Biochem 120:2671–2686

    Article  CAS  Google Scholar 

  12. Clague MJ, Urbé S, Komander D (2019) Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-019-0112-8

    Article  PubMed  Google Scholar 

  13. Fang T, Lv H, Lv G, Li T, Wang C, Han Q, Yu L, Su B, Guo L, Huang S (2018) Tumor-derived exosomal miR-1247-3p induces cancer-associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun 9:191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, Yates JR III (2009) Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 8:1304–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gustafsson NM, Färnegårdh K, Bonagas N, Ninou AH, Groth P, Wiita E, Jönsson M, Hallberg K, Lehto J, Pennisi R (2018) Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination. Nat Commun 9:3872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Han J, Meng Q, Xi Q, Zhang Y, Zhuang Q, Han Y, Jiang Y, Ding Q, Wu G (2016) Interleukin-6 stimulates aerobic glycolysis by regulating PFKFB3 at early stage of colorectal cancer. Int J Oncol 48:215–224

    Article  CAS  PubMed  Google Scholar 

  17. He J, Lee H-J, Saha S, Ruan D, Guo H, Chan C-H (2019) Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis 10:285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hölzel M, Bovier A, Tüting T (2013) Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat Rev Cancer 13:365

    Article  PubMed  CAS  Google Scholar 

  19. Hu G, Drescher KM, Chen X (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu J, Cai G, Xu Y, Cai S (2016) The Plasma microRNA miR-1914* and-1915 suppresses chemoresistant in colorectal cancer patients by down-regulating NFIX. Curr Mol Med 16:70–82

    Article  CAS  PubMed  Google Scholar 

  21. O’Loughlin J, A, A Woffindale C, JA Wood M, (2012) Exosomes and the emerging field of exosome-based gene therapy. Curr Gene Ther 12:262–274

    Article  CAS  PubMed  Google Scholar 

  22. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138:271–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  24. Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophysica Acta (BBA) Rev Cancer 1846:75–87

    Article  CAS  Google Scholar 

  25. Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R (2017) Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546:498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Katakowski M, Buller B, Zheng X, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335:201–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kurokawa K, Tanahashi T, Iima T, Yamamoto Y, Akaike Y, Nishida K, Masuda K, Kuwano Y, Murakami Y, Fukushima M (2012) Role of miR-19b and its target mRNAs in 5-fluorouracil resistance in colon cancer cells. J Gastroenterol 47:883–895

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Yang BB (2013) Friend or foe: the role of microRNA in chemotherapy resistance. Acta Pharmacol Sin 34:870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Gu J, He X, Huang S (2015) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25:981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu T, Zhang X, Du L, Wang Y, Liu X, Tian H, Wang L, Li P, Zhao Y, Duan W (2019) Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer 18:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. McMillin DW, Negri JM, Mitsiades CS (2013) The role of tumour–stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 12:217

    Article  CAS  PubMed  Google Scholar 

  32. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665

    Article  CAS  PubMed  Google Scholar 

  33. Meyerhardt JA, Mayer RJ (2005) Systemic therapy for colorectal cancer. N Engl J Med 352:476–487

    Article  CAS  PubMed  Google Scholar 

  34. Mor I, Cheung E, Vousden K (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, pp 211–216

    Google Scholar 

  35. Nakazawa K, Dashzeveg N, Yoshida K (2014) Tumor suppressor p53 induces miR-1915 processing to inhibit Bcl-2 in the apoptotic response to DNA damage. FEBS J 281:2937–2944

    Article  CAS  PubMed  Google Scholar 

  36. Shan J, Zhao W, Gu W (2009) Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 36:469–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes N, Pedroso de Lima M (2005) Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2:237–254

    Article  PubMed  Google Scholar 

  38. Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, Gavin E, Wan Y, Formentini A, Kornmann M (2009) Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene 28:4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK (2007) The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 26:976–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z, Yuan W (2018) Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer 17:147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Telang S, Yalcin A, Clem A, Bucala R, Lane A, Eaton J, Chesney J (2006) Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25:7225

    Article  CAS  PubMed  Google Scholar 

  42. Vader P, Mol EA, Pasterkamp G, Schiffelers RM (2016) Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106:148–156

    Article  CAS  PubMed  Google Scholar 

  43. Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, Sumani KM, Alder H, Amadori D, Patel T (2010) MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci 107:21098–21103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van der Meel R, Fens MH, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM (2014) Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 195:72–85

    Article  PubMed  CAS  Google Scholar 

  45. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  46. Wang B-D, Kline CLB, Pastor DM, Olson TL, Frank B, Luu T, Sharma AK, Robertson G, Weirauch MT, Patierno SR (2010) Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NFκB and microRNA network. Mol Cancer 9:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wang C-L, Wang J-Y, Liu Z-Y, Ma X-M, Wang X-W, Jin H, Zhang X-P, Fu D, Hou L-J, Lu Y-C (2014) Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis 35:1500–1509

    Article  CAS  PubMed  Google Scholar 

  48. Xu K, Liang X, Cui D, Wu Y, Shi W, Liu J (2013) miR-1915 inhibits Bcl-2 to modulate multidrug resistance by increasing drug-sensitivity in human colorectal carcinoma cells. Mol Carcinog 52:70–78

    Article  CAS  PubMed  Google Scholar 

  49. Yang AD, Fan F, Camp ER, van Buren G, Liu W, Somcio R, Gray MJ, Cheng H, Hoff PM, Ellis LM (2006) Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clin Cancer Res 12:4147–4153

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W (2015) Exosomes in cancer: small particle, big player. J Hematol Oncol 8:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the study: ZX and YL. Performed the experimental procedures: QL and YL. Analyzed the data: ZX, YL, SW, QL and YL. Drafted the manuscript: QL and YL.

Corresponding author

Correspondence to Songzhi Wei.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Ethics approval

All protocols and guidelines were approved in advance by the Ethics Committee of the Third Hospital of Nanchang (Nanchang, China).

Consent to publication

All authors confirm of submission and publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Liu, Y., Li, Q. et al. EVs delivery of miR-1915-3p improves the chemotherapeutic efficacy of oxaliplatin in colorectal cancer. Cancer Chemother Pharmacol 88, 1021–1031 (2021). https://doi.org/10.1007/s00280-021-04348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-021-04348-5

Keywords

Navigation