Skip to main content
Log in

Sulforaphane potentiates oxaliplatin-induced cell growth inhibition in colorectal cancer cells via induction of different modes of cell death

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate, whether the plant-derived isothiocyanate Sulforaphane (SFN) enhances the antitumor activities of the chemotherapeutic agent oxaliplatin (Ox) in a cell culture model of colorectal cancer. Caco-2 cells were cultured under standard conditions and treated with increasing concentrations of SFN [1–20 μM] and/or Ox [100 nM–10 μM]. For co-incubation, cells were pre-treated with SFN for 24 h. Cell growth was determined by BrdU incorporation. Drug interactions were assessed using the combination-index method (CI) (Cl < 1 indicates synergism). Apoptotic events were characterized by different ELISA techniques. Protein levels were examined by Western blot analysis. Annexin V- and propidium iodide (PI) staining followed by FACS analysis was used to differentiate between apoptotic and necrotic events. SFN and Ox alone inhibited cell growth of Caco-2 cells in a dose-dependent manner, an effect, which could be synergistically enhanced, when cells were incubated with the combination of both agents. Co-treated cells further displayed distinctive morphological changes that occurred during the apoptotic process, such as cell surface exposure of phosphatidylserine, membrane blebbing as well as the occurence of cytoplasmic histone-associated DNA fragments. Further observations thereby pointed toward simultaneous activation of both extrinsic and intrinsic apoptotic pathways. With increasing concentrations and treatment duration, a shift from apoptotic to necrotic cell death could be observed. In conclusion, the data suggest that the isothiocyanate SFN sensitizes colon cancer cells to Ox-induced cell growth inhibition via induction of different modes of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

SFN:

Sulforaphane

Ox:

Oxaliplatin

5-FU:

5-Fluorouracil

CI:

Combination index

IC50 :

Half maximal inhibitory concentration

FCS:

Fetal calf serum

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylendiaminetetraacetic acid

DMSO:

Dimethylsulfoxid

BrdU:

Bromodeoxyuridine

TRAIL:

TNF-related apoptosis-inducing ligand

PARP:

Poly [ADP-ribose] polymerase

PI:

Propidium Iodide

FITC:

Fluorescein Isothiocyanate

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  2. Raymond E, Faivre S, Chaney S, Woynarowski J, Cvitkovic E (2002) Cellular and molecular pharmacology of oxaliplatin. Mol Cancer Ther 1:227–235

    PubMed  CAS  Google Scholar 

  3. Capdevila J, Elez E, Peralta S, Macarulla T, Ramos FJ, Tabernero J (2008) Oxaliplatin-based chemotherapy in the management of colorectal cancer. Expert Rev Anticancer Ther 8:1223–1236

    Article  PubMed  CAS  Google Scholar 

  4. Rixe O, Ortuzar W, Alvarez M, Parker R, Reed E, Paull K, Fojo T (1996) Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute’s Anticancer Drug Screen panel. Biochem Pharmacol 52:1855–1865

    Article  PubMed  CAS  Google Scholar 

  5. Graham MA, Lockwood GF, Greenslade D, Brienza S, Bayssas M, Gamelin E (2000) Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res 6:1205–1218

    PubMed  CAS  Google Scholar 

  6. Sarkar FH, Li Y (2006) Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 66:3347–3350

    Article  PubMed  CAS  Google Scholar 

  7. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127

    Article  PubMed  CAS  Google Scholar 

  8. Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    Article  PubMed  CAS  Google Scholar 

  9. Kelly WK, Marks PA (2005) Drug insight: Histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2:150–157

    Article  PubMed  CAS  Google Scholar 

  10. Lindemann RK, Gabrielli B, Johnstone RW (2004) Histone-deacetylase inhibitors for the treatment of cancer. Cell Cycle 3:779–788

    Article  PubMed  CAS  Google Scholar 

  11. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  PubMed  CAS  Google Scholar 

  12. McLaughlin F, La Thangue NB (2004) Histone deacetylase inhibitors open new doors in cancer therapy. Biochem Pharmacol 68:1139–1144

    Article  PubMed  CAS  Google Scholar 

  13. Fimognari C, Nusse M, Cesari R, Iori R, Cantelli-Forti G, Hrelia P (2002) Growth inhibition, cell-cycle arrest and apoptosis in human T-cell leukemia by the isothiocyanate sulforaphane. Carcinogenesis 23:581–586

    Article  PubMed  CAS  Google Scholar 

  14. Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N, Tulliez J, Terce F (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res 60:1426–1433

    PubMed  CAS  Google Scholar 

  15. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  16. Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    Article  PubMed  CAS  Google Scholar 

  17. Khosravi-Far R, Esposti MD (2004) Death receptor signals to mitochondria. Cancer Biol Ther 3:1051–1057

    Article  PubMed  CAS  Google Scholar 

  18. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  PubMed  CAS  Google Scholar 

  19. Nakajima H, Lee YS, Matsuda T, Mizuta N, Magae J (2002) Different mechanisms for membrane and nuclear damages in apoptosis induced by an immunosuppressant, FTY720. Mol Cells 14:332–338

    PubMed  CAS  Google Scholar 

  20. Meng XW, Fraser MJ, Feller JM, Ziegler JB (2000) Caspase-3-dependent and caspase-3-independent pathways leading to chromatin DNA fragmentation in HL-60 cells. Apoptosis 5:61–67

    Article  PubMed  CAS  Google Scholar 

  21. Amaravadi RK, Thompson CB (2007) The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13:7271–7279

    Article  PubMed  CAS  Google Scholar 

  22. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  23. Carnesecchi S, Langley K, Exinger F, Gosse F, Raul F (2002) Geraniol, a component of plant essential oils, sensitizes human colonic cancer cells to 5-Fluorouracil treatment. J Pharmacol Exp Ther 301:625–630

    Article  PubMed  CAS  Google Scholar 

  24. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    PubMed  CAS  Google Scholar 

  25. Wang XQ, Xiao AY, Sheline C, Hyrc K, Yang A, Goldberg MP, Choi DW, Yu SP (2003) Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 116:2099–2110

    Article  PubMed  CAS  Google Scholar 

  26. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H (2001) Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med 7:680–686

    Article  PubMed  CAS  Google Scholar 

  27. Chen Q, Gong B, Mahmoud-Ahmed AS, Zhou A, Hsi ED, Hussein M, Almasan A (2001) Apo2L/TRAIL and Bcl-2-related proteins regulate type I interferon-induced apoptosis in multiple myeloma. Blood 98:2183–2192

    Article  PubMed  CAS  Google Scholar 

  28. Oshima K, Yanase N, Ibukiyama C, Yamashina A, Kayagaki N, Yagita H, Mizuguchi J (2001) Involvement of TRAIL/TRAIL-R interaction in IFN-alpha-induced apoptosis of Daudi B lymphoma cells. Cytokine 14:193–201

    Article  PubMed  CAS  Google Scholar 

  29. Gourdier I, Del Rio M, Crabbe L, Candeil L, Copois V, Ychou M, Auffray C, Martineau P, Mechti N, Pommier Y, Pau B (2002) Drug specific resistance to oxaliplatin is associated with apoptosis defect in a cellular model of colon carcinoma. FEBS Lett 529:232–236

    Article  PubMed  CAS  Google Scholar 

  30. Gimenez-Bonafe P, Tortosa A, Perez-Tomas R (2009) Overcoming drug resistance by enhancing apoptosis of tumor cells. Curr Cancer Drug Targets 9:320–340

    Article  PubMed  CAS  Google Scholar 

  31. Yagita H, Takeda K, Hayakawa Y, Smyth MJ, Okumura K (2004) TRAIL and its receptors as targets for cancer therapy. Cancer Sci 95:777–783

    Article  PubMed  CAS  Google Scholar 

  32. Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11:71–76

    Article  PubMed  CAS  Google Scholar 

  33. Shankar S, Srivastava RK (2004) Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist Updat 7:139–156

    Article  PubMed  CAS  Google Scholar 

  34. Wajant H, Pfizenmaier K, Scheurich P (2002) TNF-related apoptosis inducing ligand (TRAIL) and its receptors in tumor surveillance and cancer therapy. Apoptosis 7:449–459

    Article  PubMed  CAS  Google Scholar 

  35. Tsujimoto Y (1997) Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ 4:429–434

    Article  PubMed  CAS  Google Scholar 

  36. Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2:277–288

    Article  PubMed  CAS  Google Scholar 

  37. Tang HL, Yuen KL, Tang HM, Fung MC (2009) Reversibility of apoptosis in cancer cells. Br J Cancer 100:118–122

    Article  PubMed  CAS  Google Scholar 

  38. Ricci MS, Zong WX (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11:342–357

    Article  PubMed  CAS  Google Scholar 

  39. Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407:784–788

    Article  PubMed  CAS  Google Scholar 

  40. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    Article  PubMed  CAS  Google Scholar 

  41. Zhou Z, Yamamoto Y, Sugai F, Yoshida K, Kishima Y, Sumi H, Nakamura H, Sakoda S (2004) Hepatoma-derived growth factor is a neurotrophic factor harbored in the nucleus. J Biol Chem 279:27320–27326

    Article  PubMed  CAS  Google Scholar 

  42. Gillespie SK, Zhang XD, Hersey P (2004) Ingenol 3-angelate induces dual modes of cell death and differentially regulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in melanoma cells. Mol Cancer Ther 3:1651–1658

    PubMed  CAS  Google Scholar 

  43. Ogbourne SM, Suhrbier A, Jones B, Cozzi SJ, Boyle GM, Morris M, McAlpine D, Johns J, Scott TM, Sutherland KP, Gardner JM, Le TT, Lenarczyk A, Aylward JH, Parsons PG (2004) Antitumor activity of 3-ingenyl angelate: plasma membrane and mitochondrial disruption and necrotic cell death. Cancer Res 64:2833–2839

    Article  PubMed  CAS  Google Scholar 

  44. Challacombe JM, Suhrbier A, Parsons PG, Jones B, Hampson P, Kavanagh D, Rainger GE, Morris M, Lord JM, Le TT, Hoang-Le D, Ogbourne SM (2006) Neutrophils are a key component of the antitumor efficacy of topical chemotherapy with ingenol-3-angelate. J Immunol 177:8123–8132

    PubMed  CAS  Google Scholar 

  45. Siller G, Gebauer K, Welburn P, Katsamas J, Ogbourne SM (2009) PEP005 (ingenol mebutate) gel, a novel agent for the treatment of actinic keratosis: results of a randomized, double-blind, vehicle-controlled, multicentre, phase IIa study. Aust J Dermatol 50:16–22

    Article  Google Scholar 

  46. Atadja P, Gao L, Kwon P, Trogani N, Walker H, Hsu M, Yeleswarapu L, Chandramouli N, Perez L, Versace R, Wu A, Sambucetti L, Lassota P, Cohen D, Bair K, Wood A, Remiszewski S (2004) Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res 64:689–695

    Article  PubMed  CAS  Google Scholar 

  47. Atadja P, Hsu M, Kwon P, Trogani N, Bhalla K, Remiszewski S (2004) Molecular and cellular basis for the anti-proliferative effects of the HDAC inhibitor LAQ824. Novartis Found Symp 259:249–266 discussion 266–248, 285–248

    Article  PubMed  CAS  Google Scholar 

  48. Hu R, Hebbar V, Kim BR, Chen C, Winnik B, Buckley B, Soteropoulos P, Tolias P, Hart RP, Kong AN (2004) In vivo pharmacokinetics and regulation of gene expression profiles by isothiocyanate sulforaphane in the rat. J Pharmacol Exp Ther 310:263–271

    Article  PubMed  CAS  Google Scholar 

  49. Ye L, Dinkova-Kostova AT, Wade KL, Zhang Y, Shapiro TA, Talalay P (2002) Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin Chim Acta 316:43–53

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a graduate scholarship grant from the DFG to Bettina M. Kaminski. Bettina M. Kaminski is a member of the Frankfurt International Research Graduate School for Translational Biomedicine (FIRST), Frankfurt am Main.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Ulrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaminski, B.M., Weigert, A., Brüne, B. et al. Sulforaphane potentiates oxaliplatin-induced cell growth inhibition in colorectal cancer cells via induction of different modes of cell death. Cancer Chemother Pharmacol 67, 1167–1178 (2011). https://doi.org/10.1007/s00280-010-1413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1413-y

Keywords

Navigation