Skip to main content

Advertisement

Log in

Platinum-acridinylthiourea conjugates show cell line-specific cytotoxic enhancement in H460 lung carcinoma cells compared to cisplatin

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Recently, we reported a new class of DNA-targeted hybrid platinum-acridine agents. The parent intercalator, ACRAMTU, a 9-aminoacridine derivative, intercalates into the minor groove of DNA, causing the corresponding prototypical conjugate, PT-ACRAMTU (type I/n=2), to form DNA adducts dissimilar to traditional platinum drugs. Both these agents show cytotoxic activity in leukemic and ovarian cancer cells. Following the use of clonogenic survival assays, we report on the cytotoxic effects of ACRAMTU, PT-ACRAMTU, and three PT-ACRAMTU derivatives, on additional cell lines including colon (RKO), lung (H460), and cisplatin-sensitive (A2780) and cisplatin-resistant (A2780/CP) ovarian cells. While a dose-dependent effect was observed with both ACRAMTU and PT-ACRAMTU, an enhanced cytotoxic effect was seen with PT-ACRAMTU in all cell lines. PT-ACRAMTU appeared to have a similar IC50 value to cisplatin except in H460 lung cancer cells in which PT-ACRAMTU had a twofold lower IC50 value. PT-ACRAMTU appeared to act in a time-dependent manner. In H460 cells the IC50 value of PT-ACRAMTU was 235-fold higher following a 1-h incubation than following a 24-h incubation (0.27 μM), while following an 8-h incubation the IC50 value was 0.41 μM. Three derivatives of PT-ACRAMTU were also tested. A tetraalkylated derivative, type II/n=2, generated the highest IC50 values in all cell lines, while the trialkylated derivative, type III/n=2, generated IC50 values similar to its isomer, PT-ACRAMTU. PT-ACRAMTU with an added CH2 group in the thiourea linker (type I/n=3) showed IC50 values similar to the type I/n=2 prototype in H460 lung cells. An apoptotic response to PT-ACRAMTU appeared to be generated in H460 cells as evidenced by DNA laddering. These results suggest that type I/n=2 and type I/n=3 may be promising agents for the treatment of lung cancer and should be pursued in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACRAMTU:

1-[2-(acridin-9-ylaminoethyl]-1,3-dimethylthiourea

PT-ACRAMTU:

[PtCl(en)(ACRAMTU)](NO3)2

References

  1. Ackley MC, Barry CG, Mounce AM, Farmer MC, Springer BE, Day CS, Wright MW, Berners-Price SJ, Hess SM, Bierbach U (2004) Structure-activity relationships in platinum-acridinylthiourea conjugates: effect of the thiourea nonleaving group on drug stability, nucleobase affinity, and in vitro cytotoxicity. J Biol Inorg Chem 9:453–461

    Article  CAS  PubMed  Google Scholar 

  2. Augustus TM, Anderson J, Hess SM, Bierbach U (2003) Bis(acridinylthiourea)platinum(II) complexes: synthesis, DNA affinity, and biological activity in glioblastoma cells. Bioorg Med Chem Lett 13:855–858

    Article  CAS  PubMed  Google Scholar 

  3. Barry CG, Baruah H, Bierbach U (2003) Unprecedented monofunctional metalation of adenine nucleobase in guanine- and thymine-containing dinucleotide sequences by a cytotoxic platinum-acridine hybrid agent. J Am Chem Soc 125:9629–9637

    Article  CAS  PubMed  Google Scholar 

  4. Baruah H, Rector CL, Monnier SM, Bierbach U (2002) Mechanism of action of non-cisplatin type DNA-targeted platinum anticancer agents: DNA interactions of novel acridinylthioureas and their platinum conjugates. Biochem Pharmacol 64:191–200

    Article  CAS  PubMed  Google Scholar 

  5. Baruah H, Bierbach U (2003) Unusual intercalation of acridin-9-ylthiourea into the 5’-GA/TC DNA base step from the minor groove: implications for the covalent DNA adduct profile of a novel platinum-intercalator conjugate. Nucleic Acids Res 31:4138–4146

    Article  CAS  PubMed  Google Scholar 

  6. Baruah H, Bierbach U (2004) Biophysical characterization and molecular modeling of the coordinative-intercalative DNA monoadduct of a platinum-acridinylthiourea agent in a site-specifically modified dodecamer. J Biol Inorg Chem 9:335–344

    Article  CAS  PubMed  Google Scholar 

  7. Brabec V, Kasparkova J (2002) Molecular aspects of resistance to antitumor platinum drugs. Drug Resist Updat 5:147–161

    Article  CAS  PubMed  Google Scholar 

  8. Brow J, Pleatman C, Bierbach U (2002) Cytotoxic acridinylthiourea and its platinum conjugate produce enzyme-mediated DNA strand breaks. Bioorg Med Chem Lett 12:2953–2955

    Article  CAS  PubMed  Google Scholar 

  9. Budiman ME, Alexander RW, Bierbach U (2004) Unique base-step recognition by a platinum-acridinylthiourea conjugate leads to a DNA damage profile complementary to that of the anticancer drug cisplatin. Biochemistry 43:8560–8567

    Article  CAS  PubMed  Google Scholar 

  10. Dedon PC, Borch RF (1987) Characterization of the reactions of platinum antitumor agents with biologic and nonbiologic sulfur-containing nucleophiles. Biochem Pharmacol 36:1955–1964

    Article  CAS  PubMed  Google Scholar 

  11. Desoize B, Madoulet C (2002) Particular aspects of platinum compounds used at present in cancer treatment. Crit Rev Oncol Hematol 42:317–325

    PubMed  Google Scholar 

  12. Fajac A, Da Silva J, Ahomadegbe JC, Rateau JG, Bernaudin JF, Riou G, Benard J (1996) Cisplatin-induced apoptosis and p53 gene status in a cisplatin-resistant human ovarian carcinoma cell line. Int J Cancer 68:67–74

    Article  CAS  PubMed  Google Scholar 

  13. Gean KF, Ben-Shoshan R, Ramu A, Ringel I, Katzhendler J, Gibson D (1991) Eur J Med Chem 26:593–598

    Article  CAS  Google Scholar 

  14. Gelasco A, Lippard SJ (1999) Anticancer activity of cisplatin and related complexes: topics in biological inorganic chemistry, vol. 1. Springer, Berlin Heidelberg New York, pp 1–43

    Google Scholar 

  15. Hector S, Bolanowska-Higdon W, Zdanowicz J, Hitt S, Pendyala L (2001) In vitro studies on the mechanisms of oxaliplatin resistance. Cancer Chemother Pharmacol 48:398–406

    Article  CAS  PubMed  Google Scholar 

  16. Hess SM, Anderson JG, Bierbach U (2005) A non-crosslinking platinum-acridine hybrid agent shows enhanced cytotoxicity compared to clinical BCNU and cisplatin in glioblastoma cells. Bioorg Med Chem Lett 15:443–446

    Article  CAS  PubMed  Google Scholar 

  17. Hosking LK, Whelan RD, Shellard SA, Bedford P, Hill BT (1990) An evaluation of the role of glutathione and its associated enzymes in the expression of differential sensitivities to antitumour agents shown by a range of human tumour cell lines. Biochem Pharmacol 40:1833–1842

    Article  CAS  PubMed  Google Scholar 

  18. Jamieson ER, Lippard SJ (1999) Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 99:2467–2498

    Article  CAS  PubMed  Google Scholar 

  19. Koo HM, Monks A, Mikheev A, Rubinstein LV, Gray-Goodrich M, McWilliams MJ, Alvord WG, Oie HK, Gazdar AF, Paull KD, Zarbl H, Vande Woude GF (1996) Enhanced sensitivity to 1-beta-D-arabinofuranosylcytosine and topoisomerase II inhibitors in tumor cell lines harboring activated ras oncogenes. Cancer Res 56:5211–5216

    CAS  PubMed  Google Scholar 

  20. Martins ET, Baruah H, Kramarczyk J, Saluta G, Day CS, Kucera GL, Bierbach U (2001) Design, synthesis, and biological activity of a novel non-cisplatin-type platinum-acridine pharmacophore. J Med Chem 44:4492–4496

    Article  CAS  PubMed  Google Scholar 

  21. Meijer C, Mulder NH, Timmer-Bosscha H, Sluiter WJ, Meersma GJ, de Vries EG (1992) Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res 52:6885–6889

    CAS  PubMed  Google Scholar 

  22. Raymond E, Faivre S, Woynarowski JM, Chaney SG (1998) Oxaliplatin: mechanism of action and antineoplastic activity. Semin Oncol 25 [2 Suppl 5]:4–12

    CAS  Google Scholar 

  23. Sasaki H, Niimi S, Akiyama M, Tanaka T, Hazato A, Kurozumi S, Fukushima S, Fukushima M (1999) Antitumor activity of 13,14-dihydro-15-deoxy-delta7-prostaglandin-A1-methyl ester integrated into lipid microspheres against human ovarian carcinoma cells resistant to cisplatin in vivo. Cancer Res 59:3919–3922

    CAS  PubMed  Google Scholar 

  24. Singh G, Dorward A, Moorehead R, Sweet S (1995) Novel mechanisms of resistance to cancer chemotherapy. Cancer J 8:304–307

    CAS  Google Scholar 

  25. Tobe ML (1987) Substitution reactions: comprehensive coordination chemistry. Pergamon, Oxford, UK, pp 311–321

    Google Scholar 

  26. Wong E, Giandomenico CM (1999) Current status of platinum-based antitumor drugs. Chem Rev 99:2451–2466

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported in-part by a grant from the National Institutes of Health (R01 CA101880) and the Cross Campus Collaborative Research Fund of Wake Forest University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Bierbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, S.M., Mounce, A.M., Sequeira, R.C. et al. Platinum-acridinylthiourea conjugates show cell line-specific cytotoxic enhancement in H460 lung carcinoma cells compared to cisplatin. Cancer Chemother Pharmacol 56, 337–343 (2005). https://doi.org/10.1007/s00280-004-0987-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0987-7

Keywords

Navigation