Skip to main content
Log in

Clinical significance of ASXL2 and ZBTB7A mutations and C-terminally truncated RUNX1-RUNX1T1 expression in AML patients with t(8;21) enrolled in the JALSG AML201 study

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

We analyzed the clinical significance and genetic features of ASXL2 and ZBTB7A mutations, and the alternatively spliced isoform of the RUNX1-RUNX1T1 transcript, which is also called AML1-ETO9a (AE9a), in Japanese CBF-AML patients enrolled in the JALSG AML201 study. ASXL2 and ZBTB7A genes were sequenced using bone marrow samples of 41 AML patients with t(8;21) and 14 with inv(16). The relative expression levels of AE9a were quantified using the real-time PCR assay in 23 AML patients with t(8;21). We identified ASXL2 (34.1%) and ZBTB7A (9.8%) mutations in only AML patients with t(8;21). ASXL2-mutated patients had a significantly higher WBC count at diagnosis (P = 0.04) and a lower frequency of sex chromosome loss than wild-type patients (33 vs. 76%, respectively, P = 0.01). KIT mutations were the most frequently accompanied with both ASXL2 (36%) and ZBTB7A (75%) mutations. Neither ASXL2 nor ZBTB7A mutations had an impact on overall or event-free survival. Patients harboring cohesin complex gene mutations expressed significantly higher levels of AE9a than unmutated patients (P = 0.03). In conclusion, ASXL2 and ZBTB7A mutations were frequently identified in Japanese AML patients with t(8;21), but not in those with inv(16). Further analysis is required to clarify the detailed biological mechanism of AE9a regulation of the cohesin complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miyawaki S, Ohtake S, Fujisawa S, Kiyoi H, Shinagawa K, Usui N, Sakura T, Miyamura K, Nakaseko C, Miyazaki Y, Fujieda A, Nagai T, Yamane T, Taniwaki M, Takahashi M, Yagasaki F, Kimura Y, Asou N, Sakamaki H, Handa H, Honda S, Ohnishi K, Naoe T, Ohno R (2011) A randomized comparison of 4 courses of standard-dose multiagent chemotherapy versus 3 courses of high-dose cytarabine alone in postremission therapy for acute myeloid leukemia in adults: the JALSG AML201 Study. Blood 117(8):2366–2372. https://doi.org/10.1182/blood-2010-07-295279

    Article  CAS  PubMed  Google Scholar 

  2. de Bruijn MF, Speck NA (2004) Core-binding factors in hematopoiesis and immune function. Oncogene 23(24):4238–4248. https://doi.org/10.1038/sj.onc.1207763

    Article  CAS  PubMed  Google Scholar 

  3. Castilla LH, Garrett L, Adya N, Orlic D, Dutra A, Anderson S, Owens J, Eckhaus M, Bodine D, Liu PP (1999) The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia. Nat Genet 23(2):144–146. https://doi.org/10.1038/13776

    Article  CAS  PubMed  Google Scholar 

  4. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ, Burel SA, Lagasse E, Weissman IL, Akashi K, Zhang DE (2001) AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci U S A 98(18):10398–10403. https://doi.org/10.1073/pnas.171321298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA, Vukosavljevic T, Perrotti D, Vardiman JW, Carroll AJ, Kolitz JE, Larson RA, Bloomfield CD (2006) Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 24(24):3904–3911. https://doi.org/10.1200/jco.2006.06.9500

    Article  CAS  PubMed  Google Scholar 

  6. Micol JB, Pastore A, Inoue D, Duployez N, Kim E, Lee SC, Durham BH, Chung YR, Cho H, Zhang XJ, Yoshimi A, Krivtsov A, Koche R, Solary E, Sinha A, Preudhomme C, Abdel-Wahab O (2017) ASXL2 is essential for haematopoiesis and acts as a haploinsufficient tumour suppressor in leukemia. Nat Commun 8:15429. https://doi.org/10.1038/ncomms15429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li J, He F, Zhang P, Chen S, Shi H, Sun Y, Guo Y, Yang H, Man N, Greenblatt S, Li Z, Guo Z, Zhou Y, Wang L, Morey L, Williams S, Chen X, Wang QT, Nimer SD, Yu P, Wang QF, Xu M, Yang FC (2017) Loss of Asxl2 leads to myeloid malignancies in mice. Nat Commun 8:15456. https://doi.org/10.1038/ncomms15456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chou WC, Huang HH, Hou HA, Chen CY, Tang JL, Yao M, Tsay W, Ko BS, Wu SJ, Huang SY, Hsu SC, Chen YC, Huang YN, Chang YC, Lee FY, Liu MC, Liu CW, Tseng MH, Huang CF, Tien HF (2010) Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood 116(20):4086–4094. https://doi.org/10.1182/blood-2010-05-283291

    Article  CAS  PubMed  Google Scholar 

  9. Boultwood J, Perry J, Pellagatti A, Fernandez-Mercado M, Fernandez-Santamaria C, Calasanz MJ, Larrayoz MJ, Garcia-Delgado M, Giagounidis A, Malcovati L, Della Porta MG, Jadersten M, Killick S, Hellstrom-Lindberg E, Cazzola M, Wainscoat JS (2010) Frequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemia. Leukemia 24(5):1062–1065. https://doi.org/10.1038/leu.2010.20

    Article  CAS  PubMed  Google Scholar 

  10. Krauth MT, Eder C, Alpermann T, Bacher U, Nadarajah N, Kern W, Haferlach C, Haferlach T, Schnittger S (2014) High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia 28(7):1449–1458. https://doi.org/10.1038/leu.2014.4

    Article  CAS  PubMed  Google Scholar 

  11. Micol JB, Duployez N, Boissel N, Petit A, Geffroy S, Nibourel O, Lacombe C, Lapillonne H, Etancelin P, Figeac M, Renneville A, Castaigne S, Leverger G, Ifrah N, Dombret H, Preudhomme C, Abdel-Wahab O, Jourdan E (2014) Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 124(9):1445–1449. https://doi.org/10.1182/blood-2014-04-571018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Faber ZJ, Chen X, Gedman AL, Boggs K, Cheng J, Ma J, Radtke I, Chao JR, Walsh MP, Song G, Andersson AK, Dang J, Dong L, Liu Y, Huether R, Cai Z, Mulder H, Wu G, Edmonson M, Rusch M, Qu C, Li Y, Vadodaria B, Wang J, Hedlund E, Cao X, Yergeau D, Nakitandwe J, Pounds SB, Shurtleff S, Fulton RS, Fulton LL, Easton J, Parganas E, Pui CH, Rubnitz JE, Ding L, Mardis ER, Wilson RK, Gruber TA, Mullighan CG, Schlenk RF, Paschka P, Dohner K, Dohner H, Bullinger L, Zhang J, Klco JM, Downing JR (2016) The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 48(12):1551–1556. https://doi.org/10.1038/ng.3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jahn N, Agrawal M, Bullinger L, Weber D, Corbacioglu A, Gaidzik VI, Schmalbrock L, Thol F, Heuser M, Krauter J, Gohring G, Kundgen A, Fiedler W, Wattad M, Held G, Kohne CH, Horst HA, Lubbert M, Ganser A, Schlenk RF, Dohner H, Dohner K, Paschka P (2017) Incidence and prognostic impact of ASXL2 mutations in adult acute myeloid leukemia patients with t(8;21)(q22;q22): a study of the German-Austrian AML Study Group. Leukemia 31(4):1012–1015. https://doi.org/10.1038/leu.2017.18

    Article  CAS  PubMed  Google Scholar 

  14. Lunardi A, Guarnerio J, Wang G, Maeda T, Pandolfi PP (2013) Role of LRF/Pokemon in lineage fate decisions. Blood 121(15):2845–2853. https://doi.org/10.1182/blood-2012-11-292037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hartmann L, Dutta S, Opatz S, Vosberg S, Reiter K, Leubolt G, Metzeler KH, Herold T, Bamopoulos SA, Braundl K, Zellmeier E, Ksienzyk B, Konstandin NP, Schneider S, Hopfner KP, Graf A, Krebs S, Blum H, Middeke JM, Stolzel F, Thiede C, Wolf S, Bohlander SK, Preiss C, Chen-Wichmann L, Wichmann C, Sauerland MC, Buchner T, Berdel WE, Wormann BJ, Braess J, Hiddemann W, Spiekermann K, Greif PA (2016) ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. Nat Commun 7:11733. https://doi.org/10.1038/ncomms11733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lavallee VP, Lemieux S, Boucher G, Gendron P, Boivin I, Armstrong RN, Sauvageau G, Hebert J (2016) RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature. Blood 127(20):2498–2501. https://doi.org/10.1182/blood-2016-03-703868

    Article  CAS  PubMed  Google Scholar 

  17. Liu XS, Haines JE, Mehanna EK, Genet MD, Ben-Sahra I, Asara JM, Manning BD, Yuan ZM (2014) ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev 28(17):1917–1928. https://doi.org/10.1101/gad.245910.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y, Chen IM, Chen Z, Rowley JD, Willman CL, Zhang DE (2006) A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 12(8):945–949. https://doi.org/10.1038/nm1443

    Article  CAS  PubMed  Google Scholar 

  19. Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K, Chen F, Asou N, Ohtake S, Miyawaki S, Miyazaki Y, Sakura T, Ozawa Y, Usui N, Kanamori H, Kiguchi T, Imai K, Uike N, Kimura F, Kitamura K, Nakaseko C, Onizuka M, Takeshita A, Ishida F, Suzushima H, Kato Y, Miwa H, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S, Naoe T (2014) Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia 28(8):1586–1595. https://doi.org/10.1038/leu.2014.55

    Article  CAS  PubMed  Google Scholar 

  20. Osumi K, Fukui T, Kiyoi H, Kasai M, Kodera Y, Kudo K, Kato K, Matsuyama T, Naito K, Tanimoto M, Hirai H, Saito H, Ohno R, Naoe T (2002) Rapid screening of leukemia fusion transcripts in acute leukemia by real-time PCR. Leukemia Lymphoma 43(12):2291–2299. https://doi.org/10.1080/1042819021000040206

    Article  CAS  PubMed  Google Scholar 

  21. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645. https://doi.org/10.1101/gr.092759.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiao B, Wu CF, Liang Y, Chen HM, Xiong SM, Chen B, Shi JY, Wang YY, Wang JH, Chen Y, Li JM, Gu LJ, Tang JY, Shen ZX, Gu BW, Zhao WL, Chen Z, Chen SJ (2009) AML1-ETO9a is correlated with C-KIT overexpression/mutations and indicates poor disease outcome in t(8;21) acute myeloid leukemia-M2. Leukemia 23(9):1598–1604. https://doi.org/10.1038/leu.2009.104

    Article  CAS  PubMed  Google Scholar 

  23. Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ, Kirchner A, Huang L, Chaturvedi A, Wichmann M, Wiehlmann L, Shahswar R, Damm F, Gohring G, Schlegelberger B, Schlenk R, Dohner K, Dohner H, Krauter J, Ganser A, Heuser M (2014) Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 123(6):914–920. https://doi.org/10.1182/blood-2013-07-518746

    Article  CAS  PubMed  Google Scholar 

  24. Thota S, Viny AD, Makishima H, Spitzer B, Radivoyevitch T, Przychodzen B, Sekeres MA, Levine RL, Maciejewski JP (2014) Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood 124(11):1790–1798. https://doi.org/10.1182/blood-2014-04-567057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study financially was supported by Grants-in-Aid from the Scientific Research Program from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (17K09921), and from the Practical Research for Innovative Cancer Control from Japan Agency for Medical Research and Development, AMED (17ck0106251).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Hitoshi Kiyoi.

Ethics declarations

Conflict of interest

H. Kiyoi received research funding from Chugai Pharmaceutical Co., Ltd., Bristol-Myers Squibb, Kyowa Hakko Kirin Co., Ltd., Zenyaku Kogyo Co., Ltd., FUJIFILM Corporation, Nippon Boehringer Ingelheim Co., Ltd., Astellas Pharma Inc. and Celgene Corporation, consulting fees from Astellas Pharma Inc. and Daiichi Sankyo Co., Ltd., and honoraria from Bristol-Myers Squibb and Pfizer Japan Inc., N.A. received research funding from Chugai Pharmaceutical Co., Ltd. and Astellas Pharma Inc., S.M. received honoraria from Astellas Pharma Inc. and Otsuka Pharmaceutical Co., Ltd., N.U. received research funding from Nippon Shinyaku Pharmaceutical Co., Ltd., Novartis Pharma, Bristol-Myers Squibb, Celgene Corporation, Fujimoto Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Pfizer Japan Inc. and Sysmex Co., Ltd., consulting fees from Celgene Corporation, Fujimoto Pharmaceutical Co., Ltd., Otsuka Pharmaceutical Co., Ltd., Pfizer Japan Inc. and Sysmex Co., Ltd., Astellas Pharma Inc., CIMIC Co., Ltd., Eli Lilly Japan, Huya Bioscience International, Janssen Pharmaceutical Co., Ltd., Kyowa Hakko Kirin Co., Ltd., Nippon Boehiringer Ingleheim Co., Ltd., SymBio Pharmaceuticals Co., Ltd., Takeda Bio Development Center Ltd. and Zenyaku Kogyo Co., Ltd., and honoraria from Bristol-Myers Squibb, Celgene Co., Ltd., Pfizer Japan Inc., Sysmex Co., Ltd., Chugai Pharmaceutical Co., Ltd. and Kyowa Hakko Kirin Co., Ltd. AT received research funding from Chugai Pharmaceutical Co., Ltd., Astellas Pharma Inc., Pfizer Japan Inc. and Takeda Pharmaceutical Co Ltd. T.N. received research funding from FUJIFILM Corporation, Nippon Boehringer Ingelheim Co., Ltd., Astellas Pharma Inc., Dainippon Sumitomo Pharma Co., Ltd., Otsuka Pharmaceutical Co., Ltd. and Toyama Chemical Co., Ltd., patents and royalties from FUJIFILM Corporation, and honoraria from Nippon Boehringer Ingelheim Co., Ltd. and Otsuka Pharmaceutical Co., Ltd., and I.M. received honoraria from Pfizer Japan Inc., Chugai Pharmaceutical Co., Ltd., and Kyowa Hakko Kirin Co., Ltd. The other authors have no relevant conflicts to disclose.

Ethical approval

This study was approved by the institutional review board of each participating institution. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawashima, N., Akashi, A., Nagata, Y. et al. Clinical significance of ASXL2 and ZBTB7A mutations and C-terminally truncated RUNX1-RUNX1T1 expression in AML patients with t(8;21) enrolled in the JALSG AML201 study. Ann Hematol 98, 83–91 (2019). https://doi.org/10.1007/s00277-018-3492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3492-5

Keywords

Navigation