Skip to main content
Log in

Total body irradiation tremendously impair the proliferation, differentiation and chromosomal integrity of bone marrow-derived mesenchymal stromal stem cells

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Total body irradiation (TBI) is frequently used in hematopoietic stem cell transplantation (HSCT) and is associated with many complications due to radiation injury to the normal cells, including normal stem cells. Nevertheless, the effects of TBI on the mesenchymal stromal stem cell (MSC) are not fully understood. Bone marrow-derived MSCs (BM-MSCs) isolated from normal adults were irradiated with 200 cGy twice daily for consecutive 3 days, a regimen identical to that used in TBI-conditioning HSCT. The characteristics, differentiation potential, cytogenetics, hematopoiesis-supporting function, and carcinogenicity of the irradiated BM-MSCs were then compared to the non-irradiated control. The irradiated and non-irradiated MSCs shared similar morphology, phenotype, and hematopoiesis-supporting function. However, irradiated MSCs showed much lower proliferative and differentiative potential. Irradiation also induced clonal cytogenetic abnormalities of MSCs. Nevertheless, the carcinogenicity of irradiated MSCs is low in vitro and in vivo. In parallel with the ex vivo irradiation experiments, decreased proliferative and differentiative abilities and clonal cytogenetic abnormalities can also be found in MSCs isolated from transplant recipients who had received TBI-based conditioning previously. Thus, TBI used in HSCT drastically injury MSCs and may contribute to the development of some long-term complications associated with clonal cytogenetic abnormality and poor adipogenesis and osteogenesis after TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gale RP, Butturini A, Bortin MM (1991) What does total body irradiation do in bone marrow transplants for leukemia? Int J Radiat Oncol Biol Phys 20(3):631–634. https://doi.org/10.1016/0360-3016(91)90081-E

    Article  CAS  PubMed  Google Scholar 

  2. Cosset JM, Socie G, Girinsky T, Dubray B, Fourquet A, Gluckman E (1995) Radiobiological and clinical bases for total body irradiation in the leukemias and lymphomas. Semin Radiat Oncol 5(4):301–315. https://doi.org/10.1054/SRAO00500301

    Article  CAS  PubMed  Google Scholar 

  3. Thomas O, Mahe M, Campion L, Bourdin S, Milpied N, Brunet G, Lisbona A, Le Mevel A, Moreau P, Harousseau J, Cuilliere J (2001) Long-term complications of total body irradiation in adults. Int J Radiat Oncol Biol Phys 49(1):125–131. https://doi.org/10.1016/S0360-3016(00)01373-0

    Article  PubMed  Google Scholar 

  4. Faraci M, Barra S, Cohen A, Lanino E, Grisolia F, Miano M, Foppiano F, Sacco O, Cabria M, De Marco R, Stella G, Dallorso S, Bagnasco F, Vitale V, Dini G, Haupt R (2005) Very late nonfatal consequences of fractionated TBI in children undergoing bone marrow transplant. Int J Radiat Oncol Biol Phys 63(5):1568–1575. https://doi.org/10.1016/j.ijrobp.2005.04.031

    Article  PubMed  Google Scholar 

  5. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25(11):2739–2749. https://doi.org/10.1634/stemcells.2007-0197

    Article  CAS  PubMed  Google Scholar 

  6. Wang BL, Sun W, Shi ZC, Lou JN, Zhang NF, Shi SH, Guo WS, Cheng LM, Ye LY, Zhang WJ, Li ZR (2008) Decreased proliferation of mesenchymal stem cells in corticosteroid-induced osteonecrosis of femoral head. Orthopedics 31(5):444

    PubMed  Google Scholar 

  7. Garg A (2011) Clinical review#: lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab 96(11):3313–3325. https://doi.org/10.1210/jc.2011-1159

    Article  CAS  PubMed  Google Scholar 

  8. Payne VA, Grimsey N, Tuthill A, Virtue S, Gray SL, Dalla Nora E, Semple RK, O'Rahilly S, Rochford JJ (2008) The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation. Diabetes 57(8):2055–2060. https://doi.org/10.2337/db08-0184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uckan D, Kilic E, Sharafi P, Kazik M, Kaya F, Erdemli E, Can A, Tezcaner A, Kocaefe C (2009) Adipocyte differentiation defect in mesenchymal stromal cells of patients with malignant infantile osteopetrosis. Cytotherapy 11(4):392–402. https://doi.org/10.1080/14653240802582083

    Article  CAS  PubMed  Google Scholar 

  10. Onate B, Vilahur G, Camino-Lopez S, Diez-Caballero A, Ballesta-Lopez C, Ybarra J, Moscatiello F, Herrero J, Badimon L (2013) Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype. BMC Genomics 14(1):625. https://doi.org/10.1186/1471-2164-14-625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mansilla E, Diaz Aquino V, Zambon D, Marin GH, Martire K, Roque G, Ichim T, Riordan NH, Patel A, Sturla F, Larsen G, Spretz R, Nunez L, Soratti C, Ibar R, van Leeuwen M, Tau JM, Drago H, Maceira A (2011) Could metabolic syndrome, lipodystrophy, and aging be mesenchymal stem cell exhaustion syndromes? Stem Cells Int 2011:943216–943210. https://doi.org/10.4061/2011/943216

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mohseny AB, Szuhai K, Romeo S, Buddingh EP, Briaire-de Bruijn I, de Jong D, van Pel M, Cleton-Jansen AM, Hogendoorn PC (2009) Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2. J Pathol 219(3):294–305. https://doi.org/10.1002/path.2603

    Article  CAS  PubMed  Google Scholar 

  13. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM, Westendorf JJ, McIvor RS, Hogendoorn PC, Szuhai K, Oseth L, Hirsch B, Yant SR, Kay MA, Peister A, Prockop DJ, Fibbe WE, Blazar BR (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25(2):371–379. https://doi.org/10.1634/stemcells.2005-0620

    Article  CAS  PubMed  Google Scholar 

  14. Bernardo ME, Zaffaroni N, Novara F, Cometa AM, Avanzini MA, Moretta A, Montagna D, Maccario R, Villa R, Daidone MG, Zuffardi O, Locatelli F (2007) Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Res 67(19):9142–9149. https://doi.org/10.1158/0008-5472.CAN-06-4690

    Article  CAS  PubMed  Google Scholar 

  15. Rosland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn JC, Goldbrunner R, Lonning PE, Bjerkvig R, Schichor C (2009) Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res 69(13):5331–5339. https://doi.org/10.1158/0008-5472.CAN-08-4630

    Article  CAS  PubMed  Google Scholar 

  16. Kirsch DG, Dinulescu DM, Miller JB, Grimm J, Santiago PM, Young NP, Nielsen GP, Quade BJ, Chaber CJ, Schultz CP, Takeuchi O, Bronson RT, Crowley D, Korsmeyer SJ, Yoon SS, Hornicek FJ, Weissleder R, Jacks T (2007) A spatially and temporally restricted mouse model of soft tissue sarcoma. Nat Med 13(8):992–997. https://doi.org/10.1038/nm1602

    Article  CAS  PubMed  Google Scholar 

  17. Adachi M, Asakura Y, Muroya K, Goto H, Kigasawa H (2013) Abnormal adipose tissue distribution with unfavorable metabolic profile in five children following hematopoietic stem cell transplantation: a new etiology for acquired partial lipodystrophy. Clin Pediatr Endocrinol 22(4):53–64. https://doi.org/10.1292/cpe.22.53

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rajendran R, Abu E, Fadl A, Byrne CD (2013) Late effects of childhood cancer treatment: severe hypertriglyceridaemia, central obesity, non alcoholic fatty liver disease and diabetes as complications of childhood total body irradiation. Diabet Med 30(8):e239–e242. https://doi.org/10.1111/dme.12234

    Article  CAS  PubMed  Google Scholar 

  19. Mostoufi-Moab S, Ginsberg JP, Bunin N, Zemel B, Shults J, Leonard MB (2012) Bone density and structure in long-term survivors of pediatric allogeneic hematopoietic stem cell transplantation. J Bone Miner Res 27(4):760–769. https://doi.org/10.1002/jbmr.1499

    Article  PubMed  PubMed Central  Google Scholar 

  20. McClune BL, Polgreen LE, Burmeister LA, Blaes AH, Mulrooney DA, Burns LJ, Majhail NS (2011) Screening, prevention and management of osteoporosis and bone loss in adult and pediatric hematopoietic cell transplant recipients. Bone Marrow Transplant 46(1):1–9. https://doi.org/10.1038/bmt.2010.198

    Article  CAS  PubMed  Google Scholar 

  21. Curtis RE, Rowlings PA, Deeg HJ, Shriner DA, Socie G, Travis LB, Horowitz MM, Witherspoon RP, Hoover RN, Sobocinski KA, Fraumeni JF Jr, Boice JD Jr (1997) Solid cancers after bone marrow transplantation. N Engl J Med 336(13):897–904. https://doi.org/10.1056/NEJM199703273361301

    Article  CAS  PubMed  Google Scholar 

  22. Bhatia S, Louie AD, Bhatia R, O'Donnell MR, Fung H, Kashyap A, Krishnan A, Molina A, Nademanee A, Niland JC, Parker PA, Snyder DS, Spielberger R, Stein A, Forman SJ (2001) Solid cancers after bone marrow transplantation. J Clin Oncol 19(2):464–471. https://doi.org/10.1200/JCO.2001.19.2.464

    Article  CAS  PubMed  Google Scholar 

  23. Inamoto Y, Shah NN, Savani BN, Shaw BE, Abraham AA, Ahmed IA, Akpek G, Atsuta Y, Baker KS, Basak GW, Bitan M, DeFilipp Z, Gregory TK, Greinix HT, Hamadani M, Hamilton BK, Hayashi RJ, Jacobsohn DA, Kamble RT, Kasow KA, Khera N, Lazarus HM, Malone AK, Lupo-Stanghellini MT, Margossian SP, Muffly LS, Norkin M, Ramanathan M, Salooja N, Schoemans H, Wingard JR, Wirk B, Wood WA, Yong A, Duncan CN, Flowers ME, Majhail NS (2015) Secondary solid cancer screening following hematopoietic cell transplantation. Bone Marrow Transplant 50(8):1013–1023. https://doi.org/10.1038/bmt.2015.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yeh SP, Lo WJ, Lin CL, Liao YM, Lin CY, Bai LY, Liang JA, Chiu CF (2012) Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells. Ann Hematol 91(2):163–172. https://doi.org/10.1007/s00277-011-1254-8

    Article  PubMed  Google Scholar 

  25. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147. https://doi.org/10.1126/science.284.5411.143

    Article  CAS  PubMed  Google Scholar 

  26. Liao W, McNutt MA, Zhu WG (2009) The comet assay: a sensitive method for detecting DNA damage in individual cells. Methods 48(1):46–53. https://doi.org/10.1016/j.ymeth.2009.02.016

    Article  CAS  PubMed  Google Scholar 

  27. in 't Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88(8):845–852

    PubMed  Google Scholar 

  28. International Standing Committee on Human Cytogenetic Nomenclature, Shaffer LG, Slovak ML, Campbell LJ (2009) ISCN 2009: an international system for human cytogenetic nomenclature (2009). Karger, Basel; Unionville, CT

  29. Novitzky N, Mohamed R (1995) Alterations in both the hematopoietic microenvironment and the progenitor cell population follow the recovery from myeloablative therapy and bone marrow transplantation. Exp Hematol 23(14):1661–1666

    CAS  PubMed  Google Scholar 

  30. Laver J, Ebell W, Castro-Malaspina H (1986) Radiobiological properties of the human hematopoietic microenvironment: contrasting sensitivities of proliferative capacity and hematopoietic function to in vitro irradiation. Blood 67(4):1090–1097

    CAS  PubMed  Google Scholar 

  31. Li J, Kwong DL, Chan GC (2007) The effects of various irradiation doses on the growth and differentiation of marrow-derived human mesenchymal stromal cells. Pediatr Transplant 11(4):379–387. https://doi.org/10.1111/j.1399-3046.2006.00663.x

    Article  PubMed  Google Scholar 

  32. Ikeda S, Hachisu R, Yamaguchi A, Gao YH, Okano T (2000) Radiation retards muscle differentiation but does not affect osteoblastic differentiation induced by bone morphogenetic protein-2 in C2C12 myoblasts. Int J Radiat Biol 76(3):403–411

    Article  CAS  PubMed  Google Scholar 

  33. Pohl F, Hassel S, Nohe A, Flentje M, Knaus P, Sebald W, Koelbl O (2003) Radiation-induced suppression of the Bmp2 signal transduction pathway in the pluripotent mesenchymal cell line C2C12: an in vitro model for prevention of heterotopic ossification by radiotherapy. Radiat Res 159(3):345–350.

  34. Mayson SE, Parker VE, Schutta MH, Semple RK, Rickels MR (2013) Severe insulin resistance and hypertriglyceridemia after childhood total body irradiation. Endocr Pract 19(1):51–58. https://doi.org/10.4158/EP12115.OR

    Article  PubMed  PubMed Central  Google Scholar 

  35. Baker KS, Ness KK, Steinberger J, Carter A, Francisco L, Burns LJ, Sklar C, Forman S, Weisdorf D, Gurney JG, Bhatia S (2007) Diabetes, hypertension, and cardiovascular events in survivors of hematopoietic cell transplantation: a report from the bone marrow transplantation survivor study. Blood 109(4):1765–1772. https://doi.org/10.1182/blood-2006-05-022335

    Article  CAS  PubMed  Google Scholar 

  36. Chemaitilly W, Boulad F, Oeffinger KC, Sklar CA (2009) Disorders of glucose homeostasis in young adults treated with total body irradiation during childhood: a pilot study. Bone Marrow Transplant 44(6):339–343. https://doi.org/10.1038/bmt.2009.40

    Article  CAS  PubMed  Google Scholar 

  37. Poglio S, Galvani S, Bour S, Andre M, Prunet-Marcassus B, Penicaud L, Casteilla L, Cousin B (2009) Adipose tissue sensitivity to radiation exposure. Am J Pathol 174(1):44–53. https://doi.org/10.2353/ajpath.2009.080505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ablamunits V, Weisberg SP, Lemieux JE, Combs TP, Klebanov S (2007) Reduced adiposity in ob/ob mice following total body irradiation and bone marrow transplantation. Obesity (Silver Spring) 15(6):1419–1429. https://doi.org/10.1038/oby.2007.170

    Article  CAS  Google Scholar 

  39. Mehrara BJ, Avraham T, Soares M, Fernandez JG, Yan A, Zampell JC, Andrade VP, Cordeiro AP, Sorrento CM (2010) p21cip/WAF is a key regulator of long-term radiation damage in mesenchyme-derived tissues. FASEB J 24(12):4877–4888. https://doi.org/10.1096/fj.10-155762

    Article  CAS  PubMed  Google Scholar 

  40. Schulte CM, Beelen DW (2004) Bone loss following hematopoietic stem cell transplantation: a long-term follow-up. Blood 103(10):3635–3643. https://doi.org/10.1182/blood-2003-09-3081

    Article  CAS  PubMed  Google Scholar 

  41. Yao S, Smiley SL, West K, Lamonica D, Battiwalla M, McCarthy PL Jr, Hahn T (2010) Accelerated bone mineral density loss occurs with similar incidence and severity, but with different risk factors, after autologous versus allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 16(8):1130–1137. https://doi.org/10.1016/j.bbmt.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  42. Ishiguro H, Yasuda Y, Hyodo H, Tomita Y, Koike T, Shinagawa T, Shimizu T, Morimoto T, Hattori K, Matsumoto M, Inoue H, Yabe H, Yabe M, Shinohara O, Kato S (2009) Growth and endocrine function in long-term adult survivors of childhood stem cell transplant. Clin Pediatr Endocrinol 18(1):1–14. https://doi.org/10.1297/cpe.18.1

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dai QY, Souillet G, Bertrand Y, Galambrun C, Bleyzac N, Manel AM, Bruno B, Souillet AL, Homole E, Pages MP, Berlier P, David M, Berthier JC, Massenavette B, Contamin B, Philippe N (2004) Antileukemic and long-term effects of two regimens with or without TBI in allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia. Bone Marrow Transplant 34(8):667–673. https://doi.org/10.1038/sj.bmt.1704605

    Article  CAS  PubMed  Google Scholar 

  44. Olshan JS, Willi SM, Gruccio D, Moshang T Jr (1993) Growth hormone function and treatment following bone marrow transplant for neuroblastoma. Bone Marrow Transplant 12(4):381–385

    CAS  PubMed  Google Scholar 

  45. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313. https://doi.org/10.1038/nature10762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rizzo JD, Curtis RE, Socie G, Sobocinski KA, Gilbert E, Landgren O, Travis LB, Travis WD, Flowers ME, Friedman DL, Horowitz MM, Wingard JR, Deeg HJ (2009) Solid cancers after allogeneic hematopoietic cell transplantation. Blood 113(5):1175–1183. https://doi.org/10.1182/blood-2008-05-158782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all of the nursing staff at the 5H BMT unit and other members of BMT team of CMUH for their excellent care of our transplant patients. This work was supported in part by the research grant from China Medical University Hospital (DMR-97-118 to LM.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Mu Chen or Su-Peng Yeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the institutional and/or national research committee(s) and in compliance with the Helsinki declaration.

Informed consent

Informed consent was obtained from each participant in this study.

Electronic supplementary material

ESM 1

(DOCX 15.9 kb)

ESM 2

(DOCX 13.4 kb)

ESM 3

(DOCX 14.5 kb)

ESM 4

(DOCX 68.6 kb)

ESM 5

(DOCX 167 kb)

ESM 6

(DOCX 212 kb)

ESM 7

(DOCX 222 kb)

ESM 8

(DOCX 39.5 kb)

ESM 9

(DOCX 53.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, WJ., Lin, CL., Chang, YC. et al. Total body irradiation tremendously impair the proliferation, differentiation and chromosomal integrity of bone marrow-derived mesenchymal stromal stem cells. Ann Hematol 97, 697–707 (2018). https://doi.org/10.1007/s00277-018-3231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-018-3231-y

Keywords

Navigation