Skip to main content
Log in

Influence of TNF and IL6 gene polymorphisms on the severity of cytopenias in Argentine patients with myelodysplastic syndromes

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Myelodysplastic syndromes (MDS) represent a heterogeneous group of hematologic disorders characterized by cytopenia(s) and predisposition to leukemic progression. An immune dysregulation and an aberrant bone marrow microenvironment seem to be key elements in the physiopathological process of MDS. In order to evaluate a possible association between susceptibility and clinic-pathologic features, we genotyped 153 MDS patients for functional cytokine polymorphisms: TNF (−308 G/A), IFNG (+874 A/T and +875 CAn), IL6 (−174 G/C), and TGFB1 (+869 C/T and +915 G/C). The frequency of TNF and IL6 polymorphisms was different between patients and healthy controls (n = 131), suggesting a relatedness to MDS susceptibility in our population. Furthermore, the presence of each or both high-producing genotypes [TNF: p = 0.048, odds ratio (OR): 3.979; IL6: p = 0.001, OR: 6.835; both: p = 0.010, OR: 6.068] and thrombocytopenia at platelet counts of <50,000/μL (p = 0.004, OR: 4.857) were independently associated with an increased risk of manifesting a hemoglobin level of <8 g/dL at diagnosis. In particular, a severe bicytopenia was more frequently observed in patients with the TNF (high)_IL6 (high) combined genotype (p = 0.004, OR: 8.357), who consistently became transfusion dependent earlier (2.9 vs. 34.6 months; p = 0.001); and this likelihood was more evident in patients with lower bone marrow blast counts. The contribution of the remaining functional polymorphisms to the disease phenotype was less relevant. Our results demonstrate that TNF and IL6 gene polymorphisms, as underlying host features, are likely to play a key role in influencing the severity of the cytopenias in MDS and they may be instrumental for tailoring cytokine-target therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett JM, Catovsky D, Daniel MT et al (1982) Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51:189–199

    Article  CAS  PubMed  Google Scholar 

  2. Greenberg P, Cox C, LeBeau MM et al (1997) International international scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    CAS  PubMed  Google Scholar 

  3. Swerdlow SH, Campo E, Lee Harris N et al (2008) WHO classification of Tumours of Haematopoietic and lymphoid tissues. Vol. 2. International Agency for Research on Cancer, Lyon

    Google Scholar 

  4. Greenberg PL, Tuechler H, Schanz J et al (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120:2454–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garcia-Manero G (2015) Myelodysplastic syndromes: 2015 update on diagnosis, risk-stratification and management. Am J Hematol 90:831–841

    Article  PubMed  Google Scholar 

  6. Papaemmanuil E, Gerstung M, Malcovati L et al (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122:3616–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Flores-Figueroa E, Gutiérrez-Espíndola G, Montesinos JJ, Arana-Trejo RM, Mayani H (2002) In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk Res 26:677–686

    Article  CAS  PubMed  Google Scholar 

  8. Barrett AJ, Sloand E (2009) Autoimmune mechanisms in the pathophysiology of myelodysplastic syndromes and their clinical relevance. Haematologica 94:449–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kittang AO, Kordasti S, Sand KE et al (2015) Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncoimmunology. doi:10.1080/2162402X.2015.1062208

  10. Braun T, Fenaux P (2013) Myelodysplastic syndromes (MDS) and autoimmune disorders (AD): cause or consequence? Best Pract Res Clin Haematol 26:327–336

    Article  CAS  PubMed  Google Scholar 

  11. Mundle SD, Ali A, Cartlidge JD et al (1999) Evidence for involvement of tumor necrosis factor-alpha in apoptotic death of bone marrow cells in myelodysplastic syndromes. Am J Hematol 60:36–47

    Article  CAS  PubMed  Google Scholar 

  12. Stifter G, Heiss S, Gastl G, Tzankov A, Stauder R (2005) Over-expression of tumor necrosis factor-alpha in bone marrow biopsies from patients with myelodysplastic syndromes: relationship to anemia and prognosis. Eur J Haematol 75:485–491

    Article  CAS  PubMed  Google Scholar 

  13. Stasi R, Brunetti M, Bussa S et al (1997) Serum levels of tumour necrosis factor-a predict response to recombinant human erythropoietin in patients with myelodysplastic syndrome. Clin Lab Haematol 19:197–201

    Article  CAS  PubMed  Google Scholar 

  14. Kitagawa M, Saito I, Kuwata T et al (1997) Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 11:2049–2054

    Article  CAS  PubMed  Google Scholar 

  15. Pardanani A, Finke C, Lasho TL et al (2012) IPSS-independent prognostic value of plasma CXCL10, IL-7 and IL-6 levels in myelodysplastic syndromes. Leukemia 26:693–699

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Z, Wang Z, Li Q, Li W, You Y, Zou P (2012) The different immunoregulatory functions of mesenchymal stem cells in patients with low-risk or high-risk myelodysplastic syndromes. PLoS One. doi:10.1371/journal.pone.0045675

  17. El Mahgoub IR, Afify RA, Botros SK, Fawzy R (2014) Immunoregulatory cytokines gene polymorphisms in Egyptian patients affected with acquired aplastic anemia. Ann Hematol 93:923–929

    PubMed  Google Scholar 

  18. Lee YG, Kim I, Kim JH et al (2011) Impact of cytokine gene polymorphisms on risk and treatment outcomes of aplastic anemia. Ann Hematol 90:515–521

    Article  CAS  PubMed  Google Scholar 

  19. Fishman D, Faulds G, Jeffery R et al (1998) The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 102:1369–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dufour C, Capasso M, Svahn J et al (2004) Homozygosis for (12) CA repeats in the first intron of the human IFN-gamma gene is significantly associated with the risk of aplastic anaemia in Caucasian population. Br J Haematol 126:682–685

    Article  CAS  PubMed  Google Scholar 

  21. Newell LF, Gooley T, Hansen JA, Stirewalt DL, Petersdorf EW, Deeg HJ (2010) Tumor necrosis factor polymorphism affects transplantation outcome in patients with myelodysplastic syndrome but not in those with chronic myelogenous leukemia, independent of the presence of HLA-DR15. Biol Blood Marrow Transplant 16:1700–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belli CB, Bestach Y, Sieza Y et al (2011) The presence of -308A TNFα is associated with anemia and thrombocytopenia in patients with myelodysplastic syndromes. Blood Cells Mol Dis 47:255–258

    Article  CAS  PubMed  Google Scholar 

  23. Serio B, Selleri C, Maciejewski JP (2011) Impact of immunogenetic polymorphisms in bone marrow failure syndromes. Mini Rev Med Chem 11:544–552

    Article  CAS  PubMed  Google Scholar 

  24. López-Hernández R, Valdés M, Campillo JA et al (2014) Genetic polymorphisms of tumour necrosis factor alpha (TNF-α) promoter gene and response to TNF-α inhibitors in Spanish patients with inflammatory bowel disease. Int J Immunogenet 41:63–68

    Article  PubMed  Google Scholar 

  25. Bestach Y, Sieza Y, Attie M et al (2015) Polymorphisms in TNF and IFNG are associated with clinical characteristics of aplastic anemia in Argentinean population. Leuk Lymphoma 56:1793–1798

    Article  CAS  PubMed  Google Scholar 

  26. Aladzsity I, Kovács M, Semsei A et al (2009) Comparative analysis of IL6 promoter and receptor polymorphisms in myelodysplasia and multiple myeloma. Leuk Res 33:1570–1573

    Article  CAS  PubMed  Google Scholar 

  27. Chen W, Zhu H, Yu L, Lu Z, Yao Z, Xiao Y (2015) TNF-α −308 G>a polymorphism and risk of bone marrow failure syndrome: a meta-analysis. Gene 565:1–8

    Article  CAS  PubMed  Google Scholar 

  28. Bidwell J, Keen L, Gallagher G et al (1999) Cytokine gene polymorphism in human disease: on-line databases. Genes Immun 1:3–19

    Article  CAS  PubMed  Google Scholar 

  29. Pravica V, Perrey C, Stevens A, Lee JH, Hutchinson IV (2000) A single nucleotide polymorphism in the first intron of the human IFN-gamma gene: absolute correlation with a polymorphic CA microsatellite marker of high IFN-gamma production. Hum Immunol 61:863–866

    Article  CAS  PubMed  Google Scholar 

  30. Dunning AM, Ellis PD, McBride S et al (2003) A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res 63:2610–2615

    CAS  PubMed  Google Scholar 

  31. Wilson AG, di Giovine FS, Blakemore AI, Duff GW (1992) Single base polymorphism in the human tumour necrosis factor alpha (TNF alpha) gene detectable by NcoI restriction of PCR product. Hum Mol Genet 1:353

    Article  CAS  PubMed  Google Scholar 

  32. Perrey C, Turner SJ, Pravica V, Howell WM, Hutchinson IV (1999) ARMS-PCR methodologies to determine IL-10, TNF-alpha, TNF-beta and TGF-beta 1 gene polymorphisms. Transpl Immunol 7:127–128

    Article  CAS  PubMed  Google Scholar 

  33. Maynard SJ (1998) Evolutionary genetics, Second edn. Oxford University Press, New York

    Google Scholar 

  34. Parnes A, Nikiforow S, Berliner N, Vanasse GJ (2010) Single nucleotide polymorphisms in the human TNF gene are associated with anaemia and neutropenia in a cohort of patients with de novo myelodysplastic syndrome. Br J Haematol 150:700–701

    Article  PubMed  Google Scholar 

  35. Powers MP, Nishino H, Luo Y et al (2007) Polymorphisms in TGFbeta and TNFalpha are associated with the myelodysplastic syndrome phenotype. Arch Pathol Lab Med 131:1789–1793

    CAS  PubMed  Google Scholar 

  36. de Bruin AM, Libregts SF, Valkhof M, Boon L, Touw IP, Nolte MA (2012) IFNγ induces monopoiesis and inhibits neutrophil development during inflammation. Blood 119:1543–1554

    Article  PubMed  Google Scholar 

  37. Pellagatti A, Cazzola M, Giagounidis AA et al (2006) Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood 108:337–345

    Article  CAS  PubMed  Google Scholar 

  38. Zipperer E, Post JG, Herkert M et al (2013) Serum hepcidin measured with an improved ELISA correlates with parameters of iron metabolism in patients with myelodysplastic syndrome. Ann Hematol 92:1617–1623

    Article  CAS  PubMed  Google Scholar 

  39. Boula A, Voulgarelis M, Giannouli S et al (2006) Effect of cA2 anti-tumor necrosis factor-a antibody therapy on hematopoiesis of patients with myelodysplastic syndromes. Clin Cancer Res 12:3099–3108

    Article  CAS  PubMed  Google Scholar 

  40. Scott B, Ramakrishnan A, Fosdal M et al (2010) Anti-thymocyte globulin plus Etanercept as therapy for myelodysplastic syndromes (MDS): a phase II study. Br J Haematol 149:706–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scott BL, Ramakrishnan A, Storer B et al (2010) Prolonged responses in patients with MDS and CMML treated with azacitidine and etanercept. Br J Haematol 148:944–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garcia-Manero G, Gartenberg G, Steensma DP et al (2014) A phase 2, randomized, double-blind, multicenter study comparing siltuximab plus best supportive care (BSC) with placebo plus BSC in anemic patients with international prognostic scoring system low- or intermediate-1-risk myelodysplastic syndrome. Am J Hematol 89:E156–E162

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all members of Argentine participating hematological services for their involvement in the present study. All the authors gave significant intellectual contributions to the composition of the manuscript, critically reviewed the content, and approved the final version.

This paper was supported by Argentine grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 0088 and PIP 0056) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT 1677 and PID 0044).

Dr. Donald F. Haggerty, a retired academic career investigator and native English speaker, edited the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesica Bestach.

Ethics declarations

The ethics committee of the Institutos de la Academia Nacional de Medicina has evaluated and approved this research. Since this investigation is a retrospective and prospective study; therefore, a formal consent was required in the last cases.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bestach, Y., Nagore, V.P., Flores, M.G. et al. Influence of TNF and IL6 gene polymorphisms on the severity of cytopenias in Argentine patients with myelodysplastic syndromes. Ann Hematol 96, 1287–1295 (2017). https://doi.org/10.1007/s00277-017-3036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-017-3036-4

Keywords

Navigation